
INCLUDES ROM LISTINGS

Apple Ile Technical Reference
Manual

> $24-95 FPT
USA

Apple® Technical Library Titles
for the Apple Ile and Ile
The Official Publications from
Apple Computer, Inc.
Apple Ile and Apple Ile programmers, developers,
and enthusiasts will find a wealth of information
in the Apple Technical Library, an ongoing series of
comprehensive reference manuals. The first volumes
in the Library contained detailed information about
the Apple Ile and Apple Ile computers. They describe
the hardware, firmware, the ProDOS 8 operating sys~
tern, and the Applesoft BASIC programming lan
guage found in Apple Ile and Ile computers.

These books, written and produced by Apple
Computer, Inc., provide definitive references for
those interested in getting the most out of their
Apple Ile or Ile.

Apple Technical Library Titles for the Apple Ile
and Ile include:

Apple Ile Technical Reference
Apple Ile Technical Reference
Applesoft Tutorial
Applesoft BASIC Programmer's Reference

Manual
ProDOS 8 Technical Reference
BASIC Programming with ProDOS
Apple Numerics Manual
ImageWriter II Technical Reference

Manual

•'- -_ Apple® II Apple Ile

•

Technical
Reference

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogot1 Santiago San Juan

tl APPLE COMPUTER, INC.

Copyright © 1986 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or by
any means, electronic,
mechanical, photocopying,
recording, or otherwise,
without prior written permission
of Apple Computer, Inc.
Printed in the United States of
America.

Apple, the Apple logo,
Disk II, LaserWriter, and
ProDOS are registered
trademarks of Apple Computer,
Inc.

ProFile and Macintosh are
trademarks of Apple Computer,
Inc.

CP /M is a registered trademark
of Digital Research, Inc.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

SOFTCARD and Microsoft are
registered trademarks of
Microsoft Corporation.

ZOO is a registered trademark of
Zilog, Inc.

Z-Engine is a trademark of
Advanced Logic Systems, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17750-1
ABCDEFGHIJ-D0-8987
First printing, January 1987

WARRANTY INFORMATION

All IMPIJED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPllED WARRANTIES OF
MERCHANTABll.ITY AND
FITNESS FOR A PARTICULAR
PURPOSE, Aim .LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUAIJTY,
ACCURACY, MERCHANTABIIJTY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOU> "AS IS,,. AND
YOU, THE PURCllASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUAUTY AND
ACCURACY.

IN NO EVENT Will. APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTW. DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCW
SIVE AND IN UEU OF AIL
OTHE~, ORAL OR WRITTEN,
EXPRESS OR IMPUED. No Apple
dealer, agent, or employee is
authorized to make any
modifiCation, extension, or addition
to this warranty.

Some states do no allow the exclu
sion or limitation of implied warran
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not·apply to you. This warranty
gives you specific legal rights, and
you may· also have other rights
which vary from state to state.

Contents

Figures and tables xi

Pref ace About This Manual xvii

Contents of this manual xvii
The Apple Ile family xix

Identifying your Apple Ile xix
The original Apple Ile xx
The enhanced Apple Ile xx

Startup drives xx
Video firmware xxi
Video enhancements xxi
Applesoft 8()-column support xxi
Applesoft lowercase support xxii
Apple II Pascal xxii
System Monitor enhancements xxii
Interrupt handling xxii

The extended keyboard Apple Ile xxiii
RAM upgrade xxiii
Single-wire Shift-key mod xxiii

Symbols used in this manual xxiv

Chapter 1 Introduction 1

Removing the cover 2
The keyboard 3
The speaker 4
The power supply 4
The circuit board 4
Connectors on the circuit board 7
Connectors on the back panel 8

iii

Iv Contents

Chapter 2 Built-In 1/0 Devices 9

The keyboard 10
Reading the keyboard 12

The video display generator 16
Text modes 19

Text character sets 19
40-column versus 80-column text 21

Graphics modes 21
Low-resolution graphics 21
High-resolution graphics 23
Double high-resolution graphics- 25

Video display pages 27
Display mode switching 28
Addressing display pages directly 31

Secondary inputs and outputs 38
The speaker 38
Cassette input and output 39
The hand control connector signals 40

Annunciator outputs 40
Strobe output 41
Switch inputs 41
Analog inputs 42

Summary of secondary I/0 locations 43

Chapter 3 Built-In 1/0 Firmware 45

Using the I/O subroutines 48
Apple II compatibility 48

The BO-column firmware 49
The old monitor 51

The standard I/0 links 51
Standard output features 52

COUT output subroutine 52
Control characters with COUTl and BASICOUT 53
The stop-list feature 55
The text window 56
Inverse and flashing text 57

Standard input features 58
RDKEY input subroutine 59
KEYIN input subroutine 59

Escape codes with KEYIN and BASICIN 60
Cursor motion in escape mode 60

GETLN input subroutine 62

Editing with GETLN 63
Cancel line 63
Backspace 63
Retype 64

Monitor firmware support 64
1/0 firmware support 68

Chapter 4 Memory Organization 73

Main memory map 74
RAM memory allocation 76

Reserved memory pages 77
Page zero 77
The 65C02 stack 78
Theinputbuffer 78
Link-address storage 78
The display buffers 78

Bank-switched memory 82
Setting bank switches 83
Reading bank switches 86

Auxiliary memory and firmware 86
Memory mode switching 88
Auxiliary-memory subroutines 91

Moving data to auxiliary memory 92
Transferring control to auxiliary memory 93

The reset routine 94
The cold-start procedure 95
The warm-start procedure 95
Forced cold start 96
The reset vector 96
Automatic self-test 98

Chapter 5 Using the Monitor 99

Invoking the Monitor 100
Syntax of Monitor commands 101
Monitor memory commands 102

Examining memory contents 102
Memory dump 102

Changing memory contents 105
Changing one byte 105
Changing consecutive locations 106
ASCII input mode 106
Moving data in memory 107
Comparing data in memory 109
Searching for bytes in memory 110

Examining and changing registers 110

Contents v

vi Contents

Monitor cassette tape commands 111
Saving data on tape 111
Reading data from tape 113

Miscellaneous Monitor commands 114
Inverse and normal display 114
Back to BASIC 115
Redirecting input and output 115
Hexadecimal arithmetic 116

Special tricks with the Monitor 116
Multiple commands 116
Filling memory 117
Repeating commands 118
Creating your own commands 119

Machine-language programs 120
Running a program 120
Disassembled programs 121

The Mini-Assembler 123
Starting the Mini-Assembler 123
Restrictions 123
Using the Mini-Assembler 124
Mini-Assembler instruction formats 126

Summary of Monitor commands 127
Examining memory 127
Changing the contents of memory 127
Moving and comparing 127
The Examine command 127
The Search command 128
Cassette tape commands 128
Miscellaneous Monitor commands 128
Running and listing programs 129
The Mini-Assembler 129

Chapter 6 Programming for Peripheral Cards 131

Peripheral-card memory spaces 132
Peripheral-card I/0 space 133
Peripheral-card ROM space 133
Expansion ROM space 133
Peripheral-card RAM space 136

I/O programming suggestions 136
Finding the slot number with ROM switched in 137
I/0 addressing 138
RAM addressing 139
Changing the standard I/O links 140

Other uses of I/0 memory space 141
Switching I/0 memoty 142

Developing cards for slot 3 144

Pascal 1.1 firmware protocol 145
Device identification 145
I/0 routine entry points 145

Interrupts on the enhanced Apple Ile 147
What is an interrupt? 147
Interrupts on Apple Ile series computers 148
Rules of the interrupt handler 149
Interrupt handling on the 65C02 and 6502 150

The interrupt vector at $FFFE 151
The built-in interrupt handler 151

Saving the Apple IIe's memory configuration 152
Managing main and auxiliary stacks 153
The user's interrupt handler at $3FE 154
Handling break instructions 155
Interrupt differences: Apple Ile versus Apple Ile 156

Chapter 7 Hardware lmplementatlon 157

Environmental specifications 158
The power supply 159

The power connector 160
The 65C02 microprocessor 161

65C02 timing 162
The custom integrated circuits 164

The Memory Management Unit 164
The Input/Output Unit 165
The PAL device 167

Memory addressing 168
ROM addressing 168
RAM addressing 169

Dynamic-RAM refreshment 170
Dynamic-RAM timing 171

The video display 173
The video counters 173
Display memory addressing 174

Display address mapping 175
Video display modes 178

Text displays 178
Low-resolution display 181
High-resolution display 183
Double high-resolution display 184

Video output signals 185
Built-in I/O circuits 186

The keyboard 187
Connecting a keypad 188

Cassette I/O 188
The speaker 189
Game I/0 signals 189 Contents vii

Expanding the Apple Ile 191
The expansion slots 191

The peripheral address bus 192
The peripheral data bus 192
Loading and driving rules 193
Interrupt and DMA daisy chains 193

The auxiliary slot 197
80-column display signals 197

Appendix A The 65C02 Microprocessor 209

Differences between 6502 and 65C02 209
Different cycle times 210
Different instruction results 210

Data sheet 210

Appendix B Directory of Built-In Subroutines 220

Appendix C Apple II Family Differences 227

Keyboard 227
Apple keys 228
Character sets 228
SO-column display 228
Escape codes and control characters 229
Built-in Language Card 229
Auxiliary memory 229
Auxiliary slot 229
Back panel and connectors 230
Soft switches 230
Built-in self-test 230
Forced reset 230
Interrupt handling 231
Vertical sync for animators 231
Signature byte 231
Hardware implementation 231

Appendix D Operating Systems and Languages 233

viii Contents

Operating systems 233
ProDOS 233
DOS 3.3 233
Pascal operating system 234
CP/M 234

Languages 234
Assembly language 234
Applesoft . BASIC 235
Integer BASIC 235
Pascal language 235
Fortran 235

Appendix E Conversion Tables 236

BitS and bytes 236
Hexadecimal and decimal 238
Hexadecimal and negative decimal 239
Graphics bits and pieces 241
Eight-bit code conversions 243

Appendix F Frequently Used Tables 252

Appendix G Using an 80-Column Text Card 267

Starting up with Pascal or CP/M 267
Starting up with ProDOS or DOS 3.3 268
Using the GET command 269
When to switch modes versus when to deactivate 269
Display features with the text card 270
INVERSE, FLASH, NORMAL, HOME 270
Tabbing with the original Apple Ile 271

Comma tabbing with the original Apple Ile 271
HTAB and POKE 1403 271

Using control characters with the card 272
Control characters and their functions 272
How to use control-character codes in programs 275
A word of caution to Pascal programmers 275

Appendix H Programming With the Super Serial Card 276
Locating the card 276
Operating modes 277
Operating commands 277

The command character 278
Baud rate, nB 279
Data format, nD 279
Parity, nP 279
Set time delay, nC, nL, and OF 280
Echo characters to the screen, E_E/D 280

Contents Ix

Automatic carriage return, C 281
Automatic line feed, L_E/D 281
Mask line feed in, M_FJD 281
Reset card, R 281
Specify screen slot, S 282
Translate lowercase characters, nT 282
Suppress control characters, Z 283
Find keyboard, F _FJD 283
XOFF recognition, X_EID 283
Tab in BASIC, T_E/D 284

Terminal mode 284
Entering terminal mode, T 284
Transmitting a break, B 284
Special characters, S_E/D 285
Quitting terminal mode, Q 285

SSC error codes 285
The ACIA 286
SSC firmware memory use 287

Zero-page locations 288
Peripheral-card I/0 space 288
Scratchpad RAM locations 290

Appendix I lntematlonal Versions 292

The English keyboard 297
The French keyboard 298
The Canadian keyboard 299
The German keyboard 300
The Italian keyboard 301
The Western Spanish keyboard 302
The Swedish keyboard 303
Certification 304

Product safety 304
Grounding notice 304

Power supply specifications 305

Appendix J Monitor Firmware Ustlng 306

x Contents

Glossary 349

Blbllography 373

Index 375

Tell Apple Card

Figures and tables

Chapter 1 Introduction

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Removing the cover 1
Apple Ile with the cover off 1
Original and enhanced Ile keyboard 3
Extended keyboard Ile keyboard 3
Circuit board 5
Expansion slots 7
Auxiliary slot 7
Back panel connectors 8

Chapter 2 Built-In 1/0 Devices 9

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11

Original and enhanced Ile keyboard 11
Extended keyboard Ile keyboard 11
40-column text display 22
80-column text display 22
High-resolution display bits 23
Map of 40-column text display 33
Map of 80-column text display 34
Map of low-resolution graphics display 35
Map of high-resolution graphics display 36
Map of double high-resolution graphics display 37
Keyboard memory locations 12
Keys and ASCII codes 14
Video display specifications 17
Display character sets 20
Low-resolution graphics colors 23
High-resolution graphics colors 25
Double high-resolution graphics colors 26
Video display page locations 28
Display soft switches 29
Annunciator memory locations 41
Secondary 1/0 memory location 43

Chapter 3 Built-In 1/0 Firmware 45

Table 3-1 Monitor firmware routines 46
Table 3-2 Apple II mode 48
Table 3-3a Control characters, 80-column firmware off 53
Table 3-3b Control characters, 80-column firmware on 53

xi

xii

Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10

Text window memory locations 57
Text format control values 57
Escape codes 60
Prompt characters 62
Video firmware routines 64
Slot 3 firmware protocol table 69
Pascal video control functions 70

Chapter 4 Memory Organization 73

Chapters

Chapter6

Figures and tables

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-S
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11

System memory map 75
RAM allocation map 76
Bank-switched memory map 82
Memory map with auxiliary memory 87
Monitor zero-page use 79
Applesoft zero-page use 80
Integer BASIC zero-page use 80
DOS 3.3 zero-page use 81
ProDOS MLI and disk-driver zero-page use 81
Bank select switches 84
Auxiliary-memory select switches 90
48K RAM transfer routines 91
Parameters for AUXMOVE routine 92
Parameters for XFER routine 93
Page 3 vectors 97

Using the Monitor 99

Table S-1 Mini-Assembler address formats 126

Programming for Peripheral Cards 131

Figure 6-1 Expansion ROM enable circuit 134
Figure 6-2 ROM disable address decoding 135
Figure 6-3 I/O memory map 142
Table 6-1 Peripheral-card VO memory locations

enabled by DEVICE SELECT' 133
Table 6-2 Peripheral-card ROM memory locations

enabled by I/0 SELECT' 133
Table 6-3 Peripheral-card RAM memory locations 136
Table 6-4 Peripheral-card 1/0 base addresses 138
Table 6-5 1/0 memory switches 143
Table 6-6 Peripheral-card device-class assignments 145
Table 6-7 1/0 routine off sets and registers

under Pascal 1.1 protocol 146
Table 6-8 Interrupt-handling sequence 152
Table 6-9 BRK handler information 155
Table 6-10 Memory configuration information 156

Chapter 7 Hardware Implementation 157

Figure 7-1 65C02 timing signals 163
Figure 7-2 MMU pinouts 165
Figure 7-3 IOU pinouts 166
Figure 7-4 PAL pinouts 167
Figure 7-5 2364 ROM pinouts 168
Figure 7-6 23128 ROM pinouts 169
Figure 7-7 2316 ROM pinouts 169
Figure 7-8 2333 ROM pinouts 170
Figure 7-9 64Kxl RAM pinouts 170
Figure 7-10 64Kx4 RAM pinouts 170
Figure 7-11 RAM timing signals 172
Figure 7-12 40-column text display memory 177
Figure 7-13a 7 MHz video timing signals 180
Figure 7-13b 14 MHz video timing signals 181
Figure 7-14 Peripheral-signal timing 194
Figure 7-15 Original and enhanced Ile schematic diagram 201
Figure 7-16 Extended keyboard Ile schematic diagram 205
Table 7-1 Summary of environmental specifications 158
Table 7-2 Power supply specifications 159
Table 7-3 Power connector signal specifications 160
Table 7-4 65C02 microprocessor specifications 161
Table 7-5 65C02 timing signal descriptions 163
Table 7-6 MMU signal descriptions 165
Table 7-7 IOU signal descriptions 166
Table 7-8 PAL signal descriptions 167
Table 7-9 RAM address multiplexing 171
Table 7-10 RAM timing signal descriptions 172
Table 7-11 Display address transformation 177
Table 7-12 Display memory addressing 177
Table 7-13 Memory address bits for display modes 178
Table 7-14 Character-generator control signals 181
Table 7-15 Internal video connector signals 186
Table 7-16 Keyboard connector signals 187
Table 7-17 Keypad connector signals 188
Table 7-18 Speaker connector signals 189
Table 7-19 Game I/0 connector signals 190
Table 7-20 Expansion slot signals 194
Table 7-21 Auxiliary slot signals 198

Figures and tables xiii

Appendix A Th• 65C02 Microprocessor 209

Table A-1 Cycle time differences 210

Appendix E Conversion Tables 236

Figure E-1
Figure E-2
Table E-1
Table E-2
Table E-3
Table E-4
Table E-5

Table E-6
Table E-7
Table E-8
Table E-9
Table E-10
Table E-11
Table E-12
Table E-13

Bits, nibbles, and bytes 237
Bit ordering in graphic displays 241
What a bit can represent 236
Values represented by a nibble 237
Hexadecimal/decimal conversion 238
Hexadecimal to negative decimal conversion 240
Hexadecimal values for high-resolution
dot patterns 241
Control characters, high bit off 244
Special characters, high bit off 245
Uppercase characters, high bit off 246
Lowercase characters, high bit off 247
Control characters, high bit on 248
Special characters, high bit on 249
Uppercase characters, high bit on 250
Lowercase characters, high bit on 251

Appendix F Frequently Used Tables 252

Table F-1
Table F-2
Table F-3
Table F-4
Table F-5
Table F-6
Table F-7
Table F-8a
Table F-8b
Table F-9
Table F-10
Table F-11
Table F-12
Table F-13
Table F-14
Table F-15
Table F-16

Keys and ASCII codes 252
Keyboard memory locations 254
Video display specifications 254
Double high-resolution graphics colors 255
Video display page locations 255
Display soft switches 256
Monitor firmware routines 257
Control characters, 80-column firmware off 259
Control characters, 80-column firmware on . 260
Text format control values 261
Escape codes 261
Pascal video control functions 263
Bank select switches 264
Auxiliary-memory select switches 265
48K RAM transfer routines 265
I/0 memory switches 266
I/0 routine offsets and registers
under Pascal 1.1 protocol 266

Appendix G Using an 80-Column Text Ccrd 267

Table G-1 Control characters, 80-column firmware on 273

xiv Figures and tables

Appendix H Programming With the Super Serial Card 276

Table H-1 Baud rate selections 279
Table H-2 Data format selections 279
Table H-3 Parity selections 279
Table H-4 Time delay selections 280
Table H-5 Lowercase character display options 282
Table H-6 STSBYTE bit definitions 285
Table H-7 Error codes and bits 286
Table H-8 Memory use map 287
Table H-9 Zero-page locations used by the SSC 288
Table H-10 Address register bits interpretation 288
Table H-11 Scratchpad RAM locations used by the SSC 290

Appendix I International Versions 292

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure I-6
Figure 1-7
Figure 1-8
Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8

International Ile schematic diagram 293
English keyboard 297
French keyboard 298
Canadian keyboard 299
German keyboard 300
Italian keyboard 301
Western Spanish keyboard 302
Swedish keyboard 303
English keyboard ASCII codes 297
French keyboard ASCII codes 298
Canadian keyboard ASCII codes 299
German keyboard ASCII codes 300
Italian keyboard ASCII codes 301
Western Spanish keyboard ASCII codes 302
Swedish keyboard ASCII codes 303
International power supply specifications 305

Figures and tables xv

Preface

About This Manual

This is the reference manual for the Apple® Ile personal computer.
It contains detailed descriptions of all of the hardware and firmware
that make up the Apple Ile and provides the technical information
that peripheral-card designers and programmers need.

This manual contains a lot of information about the way the
Apple Ile works, but it doesn't tell you how to use the Apple Ile. For
this, you should read the other Apple Ile manuals, especially the
following:

o Apple Ile Oumer's Guide

o Applesojt Tutorial

This manual is designed to answer the question "What's inside the
box?" It describes the internal operation of the Apple Ile as
completely as possible in a single volume.

Contents of this manual
The material in this manual is presented roughly in order of
increasing intimacy with the hardware; the farther you go in the
manual, the more technical the material becomes. The main
subject areas are

o introduction: preface and Chapter 1

o use of built-in features: Chapters 2 and 3

o how the memory is organized: Chapter 4

o information for programmers: Chapters 5 and 6

o hardware implementation: Chapter 7

o additional information: appendixes, glossary, and bibliography

xvii

Chapter 1 identifies the main parts of the Apple Ile and tells where
in the manual each part is described.

Chapters 2 and 3 describe the built-in input and output features of
the Apple Ile. This part of the manual includes information you
need for low-level programming on the Apple Ile. Chapter 2
describes the built-in 1/0 features, and Chapter 3 tells you how to
use the firmware that supports them.

Chapter 4 describes the way the Apple He's memory space is
organized, including the allocation of programmable memory for
the video display buffers.

Chapter 5 is a user manual for the Monitor that is included in the
built-in firmware. The Monitor is a system program that you can use
for program debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral
card connectors and gives guidelines for their use. It also describes
interrupt programming on the Apple Ile.

Chapter 7 is a description of the hardware that implements the
features described in the earlier chapters. This information is
included primarily for programmers and peripheral-card
designers, but it will also help you if you just want to understand
more about the way the Apple Ile works.

Additional reference information appears in the appendixes:

Appendix A is the manufacturer's description of the Apple He's
microprocessor.

Appendix B is a directory of the built-in 1/0 subroutines, including
their functions and starting addresses.

Appendix C describes differences among Apple II family
members.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ile.

Appendix E contains conversion tables of interest to programmers.

Appendix F contains additional copies of some of the tables that
appear in the body of the manual. The ones you will need to refer to
often are duplicated here for easy reference.

Appendix G contains information about using Apple Ile 80-column
text cards with the Apple Ile and high-level languages.

xviii Preface: About This Manual

Appendix H discusses programming on the Apple Ile with the
Apple Super Serial Card.

Appendix I describes the international keyboards and character
sets. This appendix also contains schematic diagrams of the
international circuit boards . . .

Appendix J contains the source listing of the Monitor firmware. Yol
can refer to it to find out more about the operation of the Monitor
subroutines listed in Appendix B.

Following Appendix J is a glossary defining many of the technical
terms used in this manual. Some terms that describe the use of the
Apple Ile are defined in the glossaries of the other manuals listed
earlier.

Following the glossary is a selected bibliography of sources of
additional information.

The Apple lie family
Changes have been made in the Apple Ile since the original version
was introduced. The first change resulted in a version called the
enhanced Apple Ile. The latest version is called the extended
keyboard Apple Ile. These versions are all described in this
manual. Where there are differences between the original
Apple Ile, the enhanced Ile, and the extended keyboard Ile, they
will be called out in the manual. Otherwise, the three machines
operate identically.

Identifying your Apple lie

You can tell whether you have an enhanced or an original Apple Ile
when you start up your computer: an original Ile will display
"Apple] [" at the top of the monitor screen, while the enhanced
Apple Ile will display "Apple I /e". The extended keyboard
Apple Ile is easily identified by the numeric keypad built into the
keyboard.

The Apple lie family x Ix

Opcode Is short for operation
code and Is used to describe the
basic Instructions performed by
the central processing unit of a
computer.

The original Apple lie
The original Apple Ile is the oldest member of the Ile family. It has
the following features:

o the 6502 microprocessor

o 64KofRAM

o 40-column display (unless an optional 8()-column text card is
installed)

The enhanced Apple lie
The enhanced Apple Ile includes the following changes from the
original Apple Ile:

o The 65C02 microprocessor, which is an improved version of the
6502 microprocessor found in the original Apple Ile. The 65C02
uses less power, has 27 new opcodes, and runs at the same speed
as the 6502. (See Chapter 7 and Appendix A)

o A new video ROM containing the same MouseText characters
found in the Apple Ile. (See Chapter 2.)

o New Monitor ROMs (the CD and EF ROMs) containing the
enhanced Apple Ile firmware. (See Chapter 5.)

o The identification byte at $FBCO has been changed In the
original Apple Ile it is $EA (decimal 234); in the enhanced
Apple He it is $EO (decimal 224).

o Recent models of the enhanced Ile include the Extended 80-
Column Text Card as a standard accessory, thus increasing the
available RAM in the enhanced Ile from 64K to 128K.

The enhanced Apple Ile includes a number of improved features in
addition to the changes listed above. The following sections
describe the improved features of the enhanced Ile.

Startup drives
You can use startup (boot) devices other than a Disk II® to start up
ProDOS~ on the enhanced Apple Ile.

Apple II Pascal versions 1.3 and later may start up from slots 4, 5,
or 6 on a Disk II, ProFile™, or other Apple II disk.drive. Apple II
Pascal versions 1.0 through 1.2 must start up from a Disk Il in slot 6.

DOS 3.3 may be started from a Disk II in any slot

xx Preface: About This Manual

When you turn on your Apple Ile, it searches for a disk drive
controller to start up from, beginning with slot 7 and working down
toward slot 1. As soon as a disk controller card is found, the
Apple Ile will try to load and execute the operating system found on
the disk. If the drive is not a Disk II, the operating system of the
startup volume must be either ProDOS or Apple II Pascal (version
1.3 or later). If it is a Disk II, the startup volume may be any Apple II
operating system.

Video firmware
The enhanced Apple Ile has improved 80-column firmware:

o The enhanced Apple Ile now supports lowercase input

o Escape Control-E passes most control characters to the screen.

o Escape Control-D traps most control characters before they get
to the screen.

o Escape R was removed because uppercase characters are no
longer required by Applesoft.

Video enhancements
Both 80-column Pascal and 80-column mode Applesoft output are
faster than before, and scrolling is smoother. 40-column Pascal
performance is unchanged.

In the original Apple Ile, characters echoed to COUTl during 80-
column operation were printed in every other column; the
enhanced Apple Ile firmware now prints the characters in each
column.

Applesoft 80-column support

The following Applesoft routines now work in 80-column mode:

o HTAB

o TAB

o SPC

o comma tabbing in PRINT statements

The enhanced Apple lie xxi

To find out more. see the Pascal
ProRle Manager manual.

Applesoft lowercase support
Applesoft now lets you do all your programming in lowercase.
When you list your programs, all Applesoft keywords and variable
names are automatically in uppercase characters; literal. strings and
the contents of DATA and REM statements are unchanged.

Apple II Pascal
Apple Il Pascal (version 1.2 and later) can now use a ProFile hard
disk through the Pascal ProFile Manager.

The Pascal 1.1 firmware no longer supports the control character
that switches from 80-column to 40-column operation. This control
character is no longer supported because it can put Pascal into a
condition where the exact memory configuration is not known.

System Monitor enhancements
Enhancements to the Apple He's built-in Monitor (described in
Chapter 5 in this manual) include the following:

o lowercase input

o ASCII input mode

o Monitor Search command

o the Mini-Assembler

Interrupt handling
Interrupt-handler support in the enhanced Apple Ile firmware now
handles any Apple Ile memory configuration.

xxll Preface: About This Manual

The extended keyboard Apple lie
The extended keyboard Apple Ile includes the following changes
from the enhanced Apple Ile:

o The new keyboard contains a built-in 18-key numeric keypad.

o The Extended 80-Column Text Card is a standard feature. The
card is shipped installed in the auxiliary slot.

o One 128K ROM IC replaces the two 64K Monitor ROM ICs (the
CD and EF ROMs).

o Two 64Kx4 RAM ICs replace the eight 64Kxl RAM ICs.

o The single-wire Shift-key mod is standard.

RAM upgrade

Both the original Apple Ile and the enhanced Apple Ile are 64K
machines, expandable to 128K through the use of auxiliary memory
cards like the Extended 80-Column Text Card. The extended
keyboard Apple Ile has 64K of main memory, mounted on the
circuit board. However, because the Extended 80-Column Text Card
is now a standard feature, providing 64K of auxiliary memory, the
extended keyboard Ile comes "pre-expanded" to 128K of RAM.

The eight 64Kxl RAM ICs on the original and enhanced Apple Ile
circuit boards have been replaced by two 64Kx4 ICs on the extended
keyboard Ile circuit board. This means that the extended keyboard
Apple Ile has two RAM ICs instead of eight like the original and
enhanced He's. Pin-out diagrams for both RAM IC configurations
are provided in Chapter 7.

Single-wire Shift-key mod

The single-wire Shift-key mod is an option jumper point on the
circuit board that lets the extended keyboard Apple Ile detect the
Shift key with the mouse active. From a practical standpoint, the
single-wire Shift-key mod allows mouse-based programs to use
"Shift-dick" control sequences on the extended keyboard Ile.

The single-wire Shift-key mod option jumper is labeled X6 on the
circuit board.

The extended keyboard Apple lie xxiii ·

Warning

Important

Extended keyboard lie

Definitions. cross-references.
and other short Items appear In
marginal glosses like this.

Symbols used in this manual
Special text in this manual is set off in several different ways, as
shown in these examples.

Important warnings appear llke this. These flag potential danger
to the Apple lie. Its software, or you.

Text set off In a box llke this Is less urgent or threatening than
text placed Inside a Warning box, but still of a critical nature.

Text set off llke this defines the differences In features or
operation between the three versions of the Apple lie.

+ By the way: Information that is useful but incidental to the text
is set off like this. You may want to skip over such information
and return to it later.

Terms that are defined in a marginal gloss or in the glossary appear
in boldface.

Words that appear on the screen are shown in a monospaced font:
It looks like this.

xxlv Preface: About This Manual

Chapter 1

Introduction

Figure 1-1
Removing 1he cover

Titls first chapter introduces you to the Apple Ile itself. It shows you
what the inside looks like, identifies the main components that make
up the machine, and tells you where to find information about each

Removing the cover
Remove the cover of the Apple Ile by pulling up on the back edge
until the fasteners on either side pop loose, then move the cover an
inch or so toward the rear' of the machine to free the front of the
cover, as shown in Figure 1-1. What you will see is shown in
Figure 1-2.

- -- -- -- -
-- -- -- --f;J<

'illll!I - -- -- -- --

Figure 1-2
Apple lie with the cover off

Warning There Is a red LED (light-emitting diode) Inside the Apple lie. in
the left rear corner of the circuit board . If the LED Is on. it means·
that the power Is on and you must turn It off before you Insert
or remove anything. To avoid damaging the Apple lie, don't
even think of changing anything inside It without first turning off
the power.

2 Chapter l: Introduction

ASCII stands for American
standard Code for Information
Interchange.

Extended keyboard lie

Figure 1-4

The keyboard
The keyboard is the primary input device for the Apple Ile. As
shown in Figure 1-3 it has a normal typewriter layout, uppercase and
lowercase, with all of the special characters in the ASCII character
set. The keyboard is fully integrated into the machine; its operation
is described in the first part of Chapter 2. Firmware subroutines for
reading the keyboard are described in Chapter 3.

The extended keyboard lie keyboard Is laid out differently from
the original and enhanced lie keyboards, and Includes on 18-
key numeric keypad. The extended keyboard lie keyboard is
shown In Figure 1-4.

Figure 1-3
Original and enhanced lie keyboard

Extended keyboard lie keyboard
The keyboard 3

The speaker
The Apple Ile has a small loudspeaker in the bottom of the case.
The speaker enables Apple Ile programs to produce a variety of
sounds that make the programs more useful and interesting. The
way programs control the speaker is described in Chapter 2.

The power supply
The power supply is inside the flat metal box along the left side of
the interior of the Apple Ile. It provides power for the main board
and for any peripheral cards installed in the Apple Ile.

The power supply produces four voltages: +5V, -5V, +12V, and
-12V. It is a high-efficiency switching supply; it includes special
circuits that protect it and the rest of the Apple Ile against short
circuits and other mishaps. Complete specifications of the
Apple Ile power supply appear in Chapter 7.

Warning The power switch and the socket for the power cord are
mounted directly on the back of the power supply's metal
case. This mounting ensures that all the circuits that carry
dangerous voltages are Inside the power supply. Do not defeat
this design feature by attempting to open the power supply.

The circuit board
All the electronic parts of the Apple Ile are attached to the circuit
board, which is mounted flat in the bottom of the case.

Figure 1-5 shows the main integrated circuits (ICs) in the original
and enhanced Apple He's. They are the central processing unit
(CPU), the keyboard encoder, the keyboard read-only memory
(ROM), the two interpreter ROMs, the video ROM, and the custom
integrated circuits: the Input Output Unit (IOU), the Memory
Management Unit (MMU), and the Programmed Array Logic (PAL)
device.

4 Chapter l: Introduction

Extended keyboard lie The extended keyboard lie circuit board layout is much the
same as that shown in Figure 1-5. However, the two Interpreter
ROMs (CD ROM and EF ROM) have been replaced by a single
ROM, and the eight RAM ICs have been replaced by two RAM
I Cs.

CPU

PAL------------

MMU

IOU ------------

Interpreter ROMs ------~

Keyboard ROM -------

Keyboard encoder -------

Video ROM ---------

Figure 1-5
Circuit board

The circuit board 5

The CPU used by both the enhanced Ile and the extended
keyboard Ile is the 65C02 microprocessor. The 65C02 is an 8-bit
microprocessor with a 16-bit address bus. The 65C02 runs at
1.02 MHz and performs up to 500,000 8-bit operations per second.
The specifications for the 65C02 are given in Appendix A.

The original version of the Apple Ile uses the 6502 microprocessor.
You can tell which version of Apple Ile you have by starting up your
machine. An original Apple Ile displays "Apple J [" at the top of
the screen during startup, while the enhanced and the extended
keyboard Apple Ile's display "Apple I /e". Titls manual will call
out specific areas where the three versions of the Apple Ile differ.

Original lie The original lie uses the 6502 microprocessor. The 6502 Is very
similar to the 65C02, except that It lacks ten Instructions and
two addressing modes found In the 65C02. In addition. the 6502
Is an NMOS device, which means Its power consumption Is
higher than the CMOS 65C02. Except for these differences. and
some minor differences In the number of clock cycles required
for execution of some Instructions. the 6502 and 65C02 are
Identical.

The keyboard is decoded by an AY-3600-PRO or 9600-PRO
integrated circuit and a read-only memory (ROM). These devices
are described in Chapter 7.

The interpreter ROMs (or ROM, in the case of the extended
keyboard Ile) are integrated circuits that contain the Applesoft
BASIC interpreter. The ROMs are described in Chapter 7. The
Applesoft language is described in the Applesojt Tutorial and the
Applesojt BASIC Programmer's Reference Manual.

Two of the large ICs are custom-made for the Apple Ile: the MMU
and the IOU. The MMU IC contains most of the logic that controls
memory addressing in the Apple Ile. The organization of the
memory is described in Chapter 4; the circuitry in the MMU itself is
described in Chapter 7.

The IOU IC contains most of the logic that controls the built-in
input/output features of the Apple Ile. These features are described
in Chapter 2 and Chapter 3; the IOU circuits are described in
Chapter 7.

6 Chapter l : Introduction

Figure 1-7
Auxiliary slot

Connectors on the circuit board
The seven slots lined up along the back of the Apple Ile circuit
board are the expansion slots, sometimes called peripheral slots.
(See Figure 1-6.) These slots make it possible to attach additional
hardware to the Apple Ile. Chapter 6 tells you how your programs
deal with the devices that plug into these slots; Chapter 7 describes
the circuitry for the slots themselves.

Figure 1-6
Expansion slots

The large slot next to the left side of the circuit board is the auxiliary
slot (Figure 1-7). If your Apple Ile has an auxiliary memory card or
80-Column Text Card, it will be installed in this slot. The Apple Ile
use this slot for the Extended 80-Column Text Card. Chapter 2
describes the 80-column display feature. The hardware and
firmware interfaces to either type of card are described in
Chapter 7.

There are also smaller connectors for game 1/0 and for an internal
RF (radio frequency) modulator. These connectors are described in
Chapter 7.

Connectors on the circuit board 7

Connectors on the back panel
The back of the Apple Ile has two miniature phone jacks for
connecting a cassette recorder: an RCA-type jack for a video
monitor, and a 9-pin D-type miniature connector for the hand
controls, as shown in Figure 1-8. In addition to these, there are
spaces for additional connectors used with the peripheral cards
installed in the Apple Ile. The installation manuals for the
peripheral cards contain instructions for installing the peripheral
connectors.

I

I

I

I I

- .. _ - ~ '"t ~r - -Y

Figure 1-8
Back panel connectors

8 Chapter l: Introduction

Chapter 2

Built-in 1/0
Devices

9

For descriptions of the built-in
1/0 hardware. refer to
Chapter 7.

Built-in 1/0 firmware routines are
described in Chapter 3.

This chapter describes the input and output (I/O) devices built into
the Apple Ile in terms of their functions and the way they are used h
programs. The built-in 1/0 devices are

o the keyboard

o the video-display generator

o the speaker

o the cassette input and output

o the game input and output

At the lowest level, programs use the built-in 1/0 devices by reading
and writing to dedicated memory locations. This chapter lists these
locations for each 1/0 device. It also gives the locations of the
internal soft switches that select the different display modes of the
Apple Ile.

<• Built-tn 1/0 routtnes: This method of input and
output-loading and storing directly to specific locations in
memory-is not the only method you can use. For many of
your programs, it may be more convenient to call the built-in
1/0 routines stored in the Apple Ile's firmware.

The keyboard
The primary built-in input device for the Apple Ile is the keyboard.
The original and enhanced Ile keyboards have 63 keys, while the
extended keyboard Ile keyboard has 81 keys. Both keyboard types
have automatic repeat, which means that if you press any key longer
than you would during normal typing, the character code for that
key will be sent continuously until you release the key. Both
keyboard types also allow you to hold down any number of keys and
still press another key; this is known as N-key rollover.

The keyboard layout shown in Figure 2-1 is for the original and
enhanced Ile keyboards. The keyboard layout shown in Figure 2-2 is
for the extended keyboard Ile keyboard.

Apple Ile's manufactured for sale outside the United States have a
slightly different standard keyboard arrangement and include
provisions for switching between different character sets. These
differences are described in Appendix I.

lo Chapter 2: Built-In 1/0 Devices

Figure 2-1
Original and enhanced lie keyboard

Figure 2-2
Extended keyboard lie keyboard

Esc = I *

7 8 9 +

4 5 6 -

1 2 3
Enter

0

In addition to the keys normally used for typing characters, there
are four cursor-control keys with arrows: left, right, down, and up.
The cursor-control keys can be read the same as other keys; their
codes are $08, $15, $0A, and $OB. (See Table 2-2.)

Three special keys-Control, Shift, and Caps Lock-change the
codes generated by the other keys. The Control key is similar to the
ASCII CTRL key.

Three other keys have special functions: the Reset key, and two keys
marked with apples, one outlined (Open Apple) and one solid
(Solid Apple). Pressing the Reset key with the Control key depressed
resets the Apple Ile, as described in Chapter 4. The Apple keys are
connected to the one-bit game inputs, described later in this
chapter.

The keyboard 11

Extended keyboard lie

See Chapter 7 for a complete
description of the electrical
interface to the keyboard.

Hexadecimal refers to the base-
16 number system. which uses
the digits O through 9 and the six
letters A through F to represent
values from 10 to 15.

On the extended keyboard lie the Solid Apple key Is labeled
Option: the Solid Apple and Option keys are functionally
Identical. Also note that manuals accompanying products with
the Solid Apple labeled as Option may refer to the Open Apple
key as simply the Apple key.

The electrical interface between the Apple Ile and the keyboard is a
ribbon cable with a 26-pin connector. Titis cable carries the
keyboard signals to the encoding circuitry on the main board.

Reading the keyboard
The keyboard encoder and ROM generate all 128 ASCII codes, so all
the special character codes in the ASCII character set are available
from the keyboard. Machine-language programs obtain character
codes from the keyboard by reading a byte from the keyboard-data
location shown in Table 2-1.

Table 2-1
Keyboard memory locations

Hex

$COOO
$C010

Location

Decimal

49152 -16384
49168 -16368

Description

Keyboard data and strobe
Any-key-down flag and dear-strobe switch

Your programs can get the code for the last key pressed by reading
the keyboard-data location. Table 2-1 gives this location in three
different forms: the hexadecimal value used in assembly language,
indicated by a preceding dollar sign ($); the decimal value used in
Applesoft BASIC; and the complementary decimal value used in
Apple Integer BASIC. Qnteger BASIC requires that values greater
than 32,767 be written as the number obtained by subtracting 65,536
from the value. These are the decimal numbers shown as negative in
tables in this manual; refer to the Apple II BASIC Programming
Manual.) The low-order seven bits of the byte at the keyboard
location contain the character code; the high-order bit of this byte
is the strobe bit, described below.

12 Chapter 2: Built-In 1/0 Devices

Your program can find out whether any key is down, except the
Reset, Control, Shift, Caps Lock, Open Apple, and Solid Apple (or
Option, on the extended keyboard Ile) keys, by reading from
location 49152 (hexadecimal $COOO or complementary decimal
-16384). The high-order bit (bit 7) of the byte you read at this
location is called any-key-doum; it is 1 if a key is down, and 0 if no
key is down. The value of this bit is 128; if a BASIC program gets this
information with a PEEK, the value is 128 or greater if any key is
down, and less than 128 if no key is down.

The Open Apple and Solid Apple keys are connected to switches 0
and 1 of the game I/0 connector inputs. If OA is pressed, switch 0 is
"pressed," and if Solid Apple is pressed, switch 1 is "pressed."

Extended keyboard lie On the extended keyboard lie, the Shift key Is connected to
switch 2 of the game 1/0 ports via the X6 jumper (single-wire
Shift-key mod jumper).

The strobe bit is the high-order bit of the keyboard-data byte. After
any key has been pressed, the strobe bit is high. It remains high
until you reset it by reading or writing at the clear-strobe location.
This location is a combination flag and switch; the flag tells whether
any key is down, and the switch clears the strobe bit The switch
function of this memory location is called a soft switch because it is
controlled by software. In this case, it doesn't matter whether the
program reads or writes, and it doesn't matter what data the
program writes: the only action that occurs is the resetting of the
keyboard strobe. Similar soft switches, described later, are used for
controlling other functions in the Apple Ile.

Important Any time you read the any-key-down flag. you also clear the
keyboard strobe. If your program needs to read both the flag
and the strobe, It must read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until
another key is pressed. Even after you have cleared the strobe, you
can still read the character code at the keyboard location. The data
byte has a different value, because the high-order bit is no longer
set, but the ASCII code in the seven low-order bits is the same until
another key is pressed. Table 2-2 shows the ASCII codes for most of
the keys on the keyboard of the Apple Ile.

The keyboard 13

There are several special-function keys that do not generate ASCII
codes. For example, you cannot read the Control, Shift, and Caps
Lock keys directly, but pressing one of these keys alters the character
codes produced by the other keys.

Extended keyboard lie As a result of the slngle-wlre Shift-key mod. the Shift key can be
read directly In the extended keyboard lie.

The reset routine Is described In
Chapter 4.

Another key that doesn't generate a code is Reset, located at the
upper-right corner of the keyboard; it is connected directly to the
Apple He's circuits. Pressing Reset with Control depressed normally
causes the system to stop whatever program it's running and restart
itself. This restarting process is called the reset routine.

Two more special keys are the Apple keys, Open Apple and Solid
Apple, located on either side of the Space bar. These keys are
connected to the one-bit game inputs, which are described later in
this chapter in the section •switch Inputs." Pressing them in
combination with the Control and Reset keys causes the built-in
firmware to perform special reset and self-test cycles, described
with the reset routine in Chapter 4.

Extended keyboard lie The Open Apple and Option keys are both located on the left
side of the Space bar on the extended keyboard lie. See
Figure 2-2 for a diagram of the keyboard layout for the
extended keyboard lie.

Table 2-2
Keys and ASCII codes

Normal Control Shift Both

Key Code Char Code Char Code Char Code Char

Delete 7F DEL 7F DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow OA LF OA LF OA LF OA IF
Up Arrow OB VT OB VT OB VT OB VT
Return OD CR OD CR OD CR OD CR
Right Arrow 15 NAK 15 NAK 15 NAK 15 NAK
Escape 1B ESC 1B ESC 1B ESC 1B ESC
Space 20 SP 20 SP 20 SP 20 SP
I H 27 27 22 22
,< 2C 2C 3C < 3C <

14 Chapter 2: Built-In 1/0 Devices

Table 2-2 (continued)
Keys and ASCII codes

Normal Control Shift Both

.Key Code Char Code Char Code Char Code Char

2D lF us SF lF us
.> 2E 2E 3E > 3E >
I ? 2F I 2F I 3F 3F
O) 30 0 30 0 29) 29)
1 ! 31 1 31 1 21 21
2@ 32 2 00 NUL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
4$ 34 4 34 4 24 $ 24 $
S% 3S s 3S s 2S % 2S %
6 I\ 36 6 lE RS SE /\. 1E RS
7& 37 7 37 7 26 & 26 &
8 • 38 8 38 8 2A 2A •

. 9 (39 9 39 9 28 (28 (

' . 3B 3B 3A 3A
=+ 3D 3D 2B + 2B +
[{ SB [1B ESC 7B { 1B ESC
\ I SC \ lC FS 7C I lC FS
] } SD] lD GS 7D } lD GS

60 60 7E 7E
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
c 63 c 03 ETX 43 c 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 6S e OS ENQ 4S E OS ENQ
F 66 f o6 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 09 HT 49 I 09 HT

J 6A j OA LF 4A J OA IF
K 6B k OB VT 4B K OB VT
L 6C 1 oc FF 4C L oc FF
M 6D m OD CR 4D M OD CR
N 6E n OE so 4E N OE so
0 6F 0 OF SI 4F 0 OF SI
p 70 p 10 DLE so p 10 DLE
Q 71 q 11 DCl Sl Q 11 DCl
R 72 r 12 DC2 S2 R 12 DC2
s 73 s 13 DC3 S3 s 13 DC3
T 74 14 DC4 54 T 14 DC4
u 7S u lS NAK 5S u 15 NAK

The keyboard 15

Table 2-2 (continued)
Keys and ASCII codes

Normal Control Shift Both

Key Code Char Code Char Code Char Code Char

v 76 v 16 SYN 56 v 16 SYN
w 77 w 17 ETB 57 w 17 ETB
x 78 x 18 CAN 58 x 18 CAN
y 79 y 19 EM 59 y 19 EM
z 7A z lA SUB 5A z lA SUB

Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer to Table E-3.

Extended keyboard lie The ASCII codes generated by the numeric keypad on the
extended keyboard lie are the same as those for the
corresponding characters on the main keyboard. See Table 2-2.

The video display generator
The primary output device of the Apple IIe is the video display. You
can use any ordinary video monitor, either color or black-and
white, to display video information from the Apple He. An
ordinary monitor is one that accepts composite video compatible
with the standard set by the NTSC (National Television Standards
Committee). If you use Apple Ile color graphics with a
monochrome (single-color) monitor, the display will appear as
that color (black, for example) and various patterns made up of
shades of that color.

If you are using only 40-column text and graphics modes, you can
use a television set for your video display. If the 1V set has an input
connector for composite video, you can connect it directly to your
Apple Ile; if it does not, you'll need to attach a radio frequency (RF)
video modulator between the Apple Ile and the television set.

Important With the 80-column text card installed, the Apple lie can
produce an 80-column text display. However, if you use an
ordinary color or black-and-white television set. 80-column text ·
will be too blurry to read. For a clear 80-column display, you
must use a high-resolution video monitor with a bandwidth of
14 MHz or greater.

16 Chapter 2: Built-In 1/0 Devices

Original lie

For a full description of the video
signal and the connections to
the Molex-type pins, refer to the
section "Video Output Signals"
in Chapter 7.

The specifications for the video display are summarized in
Table 2-3.

Note that MouseText characters are not Included In the
original version of the Apple lie.

The video signal produced by the Apple Ile is NTSC-compatible
composite color video. It is available at three places: the RCA-type
phono jack on the back of the Apple Ile, the single Molex-type pin
on the main circuit board near the back on the right side, and one
of the group of four Molex-type pins in the same area on the main
board. Use the RCA-type phono jack to connect a video monitor or
an external video modulator; use the Molex pins to connect the
type of video modulator that fits inside the Apple Ile case.

Table 2-3
Video display specifications

Display modes 40-column text; map: Figure 2-3
80-column text; map: Figure 2-4
Low-resolution color graphics; map: Figure 2-8
High-resolution color graphics; map: Figure 2-9
Double high-res color graphics; map: Figure 2-10

Text capacity 24 lines by 80 columns (character positions)

Character set 96 ASCII characters (uppercase and lowercase)

Display formats Normal, inverse, flashing, MouseText (Table 2-4)

Low-resolution
graphics

High-resolution
graphics

Double
high-resolution
graphics

16 colors (Table 2-5), 40 horizontal by 48 vertical;
map: Figure 2-8

6 colors (Table 2-6), 140 horizontal by 192 vertical
(restricted)
Black-and-white: 280 horizontal by 192 vertical;
map: Figure 2-9

16 colors (Table 2-7), 140 horizontal by 192
vertical (no restrictions)

Black-and-white: 560 horizontal by 192 vertical;
map: Figure 2-10

The video display generator 17

The Apple Ile can produce seven different kinds of video display:

o text, 24 lines of 40 characters

o text, 24 lines of 80 characters (with optional text card)

o low-resolution graphics, 40 by 48, in 16 colors

o high-resolution graphics, 140 by 192, in 6 colors

o high-resolution graphics, 280 by 192, in black and white

o double high-resolution graphics, 140 by 192, in 16 colors (with
optional 64K text card)

o double high-resolution graphics, 560 by 192, in black and white
(with optional 64K text card)

The 2 text modes can display all 96 ASCII characters: uppercase and
lowercase letters, numbers, and symbols. The enhanced and
extended keyboard Apple Ile's can also display MouseText
characters.

Any of the graphics displays can have four lines of text at the bottom
of the screen. The text may be either 40-column or 80-column,
except that double high-resolution graphics may only have 80-
column text at the bottom of the screen. Graphics displays with text
at the bottom are called mixed-mode displays.

The low-resolution graphics display is an array of colored blocks,
40 wide by 48 high, in any of 16 colors. In mixed mode, the four
lines of text replace the bottom eight rows of blocks, leaving 40 rows
of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide by
192 high. There are six colors available in high-resolution displays,
but a given dot can use only four of the six colors. If color is used,
the display is 140 dots wide by 192 high. In mixed mode, the 4 lines
of text replace the bottom 32 rows of dots, leaving lffl rows of 280
dots each.

The double high-resolution graphics display uses main and
auxiliary memory to display an array of dots, 560 wide by 192 high.
All the dots are visible in black and white. If color is used, the
display is 140 dots wide by 192 high with 16 colors available. In
mixed mode, the 4 lines of text replace the bottom 32 rows of dots,
leaving lffl rows of 560 (or 140) dots each. In mixed mode, the text
lines can be 80 columns wide only.

18 Chapter 2: Built-In 1/0 Devices

Text modes
The text characters displayed include the uppercase and lowercase
letters, the ten digits, punctuation marks, and special characters.
Each character is displayed in an area of the screen that is seven
dots wide by eight dots high. The characters are formed by a dot
matrix five dots wide, leaving two blank columns of dots between
characters in a row, except for MouseText characters, some of
which are seven dots wide. Except for lowercase letters with
descenders and some MouseText characters, the characters are
only seven dots high, leaving one blank line of dots between rows of
characters.

The normal display has white (or other single color) dots on a black
background. Characters can also be displayed as black dots on a
white background; this is called inverse format.

Text character sets

The Apple Ile can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in the
two sets are actually the same, but the available display formats are
different. The display formats are

o normal, with white dots on a black screen

o inverse, with black dots on a white screen

o flashing, alternating between normal and inverse

With the primary character set, the Apple Ile can display uppercase
characters in all three formats: normal, inverse, and flashing.
Lowercase letters can only be displayed in normal format. The
primary character set is compatible with most software written for
the Apple II and Apple II Plus models, which can display text in
flashing format but don't have lowercase characters.

The alternate character set displays characters in either normal or
inverse format. In normal format, you can get

o uppercase letters

o lowercase letters

o numbers

o special characters

In inverse format, you can get

o MouseText characters (on the enhanced and extended keyboard
Ile's)

The video display generator 19

Table 2-4

o uppercase letters

o lowercase letters

o numbers

o special characters

The MouseText characters that replace the alternate uppercase
inverse characters in the range of $40-$5F in the original Apple Ile
are inverse characters, but they don't look like it because of the way
they have been constructed.

You select the character set by means of the alternate-text soft
switch, AL TCHAR, described later in the section "Display Mode
Switching." Table 2-4 shows the character codes in hexadecimal for
the Apple Ile primary and alternate character sets in normal,
inverse, and flashing formats.

Each character on the screen is stored as one byte of display data.
The low-order six bits make up the ASCII code of the character
being displayed. The remaining two (high-order) bits select inverse
or flashing format and uppercase or lowercase characters. In the
primary character set, bit 7 selects inverse or normal format and
bit 6 controls character flashing. In the alternate character set, bit 6
selects between uppercase and lowercase, according to the ASCII
character codes, and flashing format is not available.

Display character sets

Primary character set Alternate character set
Hex
values Character type Format Character type

$00-$1F Uppercase letters Inverse Uppercase letters
$20- $3F Special characters Inverse Special characters
$40-$5F Uppercase letters Flashing Mouse Text
$60- $7F Special characters Flashing Lowercase letters
$80-$9F Uppercase letters Normal Uppercase letters
$AO-$BF Special characters Normal Special characters
$CO-$DF Uppercase letters Normal Uppercase letters
$EO-$FF Lowercase letters Normal Lowercase letters

Note: To identify particular characters and values, refer to Table 2-2.

Original lie In the alternate character set of the original Apple lie,
ch<:Jracters in the range $40-SSF are uppercase inverse.

20 Chapter 2: Built-in 1/0 Devices

Format

Inverse
Inverse
Inverse
Inverse
Normal
Normal
Normal
Normal

40-column versus 80-column text

The Apple Ile has two modes of text display: 40-column and 80-
column. (The 80-column display mode described in this manual is
the one you get with the Apple Ile 80-Column Text Card or other
auxiliary-memory card installed in the auxiliary slot.) The number
of dots in each character does not change, but the characters in 80-
column mode are only half as wide as the characters in 40-column
mode. Compare Figure 2-3 and Figure 2-4. On an ordinary color or
black-and-white television set, the narrow characters in the 80-
column display blur together; you must use the 40-column mode to
display text on a television set.

Graphics modes
The Apple Ile can produce video graphics in three different modes.
All the graphics modes treat the screen as a rectangular array of
spots. Normally, your programs will use the features of some high
level language to draw graphics dots, lines, and shapes in these
arrays; this section describes the way the resulting graphics data are
stored in the Apple Ile's memory.

Low-resolution graphics

In the low-resolution graphics mode, the Apple Ile displays an
array of 48 rows by 40 columns of colored blocks. Each block can be
any one of sixteen colors, including black and white. On a black
and-white monitor or television set, these colors appear as black,
white, and three shades of gray. There are no blank dots between
blocks; adjacent blocks of the same color merge to make a larger
shape.

Data for the low-resolution graphics display is stored in the same
part of memory as the data for the 40-column text display. Each
byte contains data for two low-resolution graphics blocks. The two
blocks are displayed one atop the other in a display space the same
size as a 40-column text character, seven dots wide by eight dots
high.

The video display generator 21

)LIST 0,100

10 REM APPLESOFT CHARACTER DEMO
20 TEXT : HOME
30 PRINT : PRINT "Applesoft Char

acter Demo"
40 PRINT : PRINT "Which characte

r set--"
50 PRINT : INPUT "Primary (P) or

Alternate (A) ?";A$
60 IF LEN (A$) < 1 THEN 50
65 LET A$ = LEFT$ (A$, 1)
70 IF A$ "P" THEN POKE 49166,

0
80 IF A$

0

"A" THEN POKE 49167,

90 PRINT PRINT " ..• printing th
e same line, first"

)LIST 0,1100

10 REM APPLESOFT CHARACTER DEMO
20 TEXT : HOME

100 PRINT " in NORMAL, then INVE
RSE ,then FLASH:": PRINT

Figure 2-3
40-column text display

30 PRINT PRINT "Applesoft Character Demo"
40 PRINT : PRINT "Which character set--"
50 PRINT : INPUT "Primary (P) or Alternate (A) ?";A$
60 IF LEN (A$) < l THEN 50
70 LET A$= LEFT$ (A$,l)
80 IF A$= "P" THEN POKE 49166,0
90 IF A$= "A" THEN POKE 49167,0
100 PRINT: PRINT " ... printing the same line, first"
150 PRINT " in NORMAL, then INVERSE ,then FLASH:": PRINT
160 NORMAL : GOSUB 1000
170 INVERSE : GOSUB 1000
180 FLASH : GOSUB 1000
190 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat." GET A$
200 GOTO 10
1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"
1100 RETURN

l

Figure 2-4
80-column text display

22 Chapter 2: Built-In 1/0 Devices

Table 2-5
Low-resolution graphics colors

Nibble value

Dec Hex Color

0 $00 Black
1 $01 Magenta
2 $02 Dark blue
3 $03 Purple
4 $04 Dark green
5 $05 Gray
6 $06 Medium blue
7 $07 Light blue
8 $08 Brown
9 $09 Orange

10 $0A Gray 2
11 $OB Pink
12 $0C Light green
13 $OD Yellow
14 $OE Aquamarine
15 $OF White

Note: Colors may vary, depending
upon the controls on the monitor or
TV set.

Bits in Data Byte

6 3 0

0

Dots on Graphics Screen

Figure 2-5
High-resolution display bits

Half a byte-four bits, or one nibble-is assigned to each graphics
block. Each nibble can have a value from 0 to 15, and this value
determines which one of 16 colors appears on the screen. The
colors and their corresponding nibble values are shown in
Table 2-5. In each byte, the low-order nibble sets the color for the
top block of the pair, and the high-order nibble sets the color for
the bottom block. Thus, a byte containing the hexadecimal value
$D8 produces a brown block atop a yellow block on the screen.

As explained later in the section "Video Display Pages," the text
display and the low-resolution graphics display use the same area in
memory. Most programs that generate text and graphics clear this
part of memory when they change display modes, but it is possible
to store data as text and display it as graphics, or vice-versa. All you
have to do is change the mode switch, described later in this
chapter in the section "Display Mode Switching," without changing
the display data. This usually produces meaningless jumbles on the
display, but some programs have used this technique to good
advantage for producing complex low-resolution graphics displays
quickly.

High-resolution graphics

In the high-resolution graphics mode, the Apple Ile displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as described
later in this section. Adjacent dots of the same color merge to form
a larger colored area.

Data for the high-resolution graphics displays are stored in either of
two 8192-byte areas in memory. These areas are called high
resolutton Page 1 and Page 2; think of them as buffers where you
can put data to be displayed. Normally, your programs will use the
features of some high-level language to draw graphics dots, lines,
and shapes to display; this section describes the way the resulting
graphics data are stored in the Apple Ile's memory.

The Apple Ile high-resolution graphics display is bit-mapped: each
dot on the screen corresponds to a bit in the Apple Ile's memory.
The seven low-order bits of each display byte control a row of seven
adjacent dots on the screen, and forty adjacent bytes in memory
control a row of 280 0 times 40) dots. The least significant bit of
each byte is displayed as the leftmost dot in a row of seven, followed
by the second-least significant bit, and so on, as shown in
Figure 2-5. Th~ eighth bit (the most significant) of each byte is not
displayed; it selects one of two color sets, as described later.

The video display generator 23

For more details about the way
the Apple lie produces color on a
TV set, see the section "Video
Display Modes· In Chapter 7.

On a black-and-white monitor, there is a simple correspondence
between bits . in memoiy and dots on the screen. A dot is white if the
bit controlling it is on (1), and the dot is black if the bit is off (O). On
a black-and-white television set, pairs of dots blur together;
alternating black and white dots merge to a continuous gray.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on, the dot wili be white
or a color, depending on its position, the dots on either side, and
the setting of the high-order bit of the byte.

Call the left-most column of dots column zero, and assume (for the
moment) that the high-order bits of all the data. bytes are off (O). If
the bits that control dots in even-numbered columns (O, 2, 4, and
so forth) are on, the dots are purple; if the bits that control odd
numbered columns are on, the dots are greeri-but only if the dots
on both sides of a given dot are black. If two adjacent dots are both
ori, they are both white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the dots
in odd-numbered columns are orange-again, only if the dots on
both sides are black. Within each horizontal line of seven dots
controlled by a single byte, you can have black, white, and one pair
of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects
the colors of all seven dots controlled by the byte.

In other words, high-resolution graphics displayed on a color
monitor or television set are made up of colored dots, according to
the following rules:

o Dots in even columns can be black, purple, or blue.

o Dots in odd columns can be black, green, or orange.

o If adjacent dots in a row are both on, they are both white.

o The colors in each row of seven dots controlled by a single byte
are either purple and green, or blue and orange, depending on
whether the high-order bit is off (O) or on (1).

24 Chapter 2: Built-In 1/0 Devices

For information about the way
NTSC color television works. see
the magazine articles listed in
the bibliography.

These rules are summarized in Table 2-6. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 2-6
High-resolution graphics colors

Bits 0-6 Bit 7 off Bit 7 on

Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary depending upon the
controls on the monitor or television set.

The peculiar behavior of the high-resolution colors reflects the way
NTSC color television works. The dots that make up the Apple Ile
video signal are spaced to coincide with the frequency of the color
subcarrier used in the NTSC system. Alternating black and white
dots at this spacing cause a color monitor or TV set to produce
color, but two or more white dots together do not. Effective
horizontal resolution with color is 140 dots per line (280 divided
by 2).

Double high-resolution graphics

In the double high-resolution graphics mode, the Apple Ile
displays an array of colored dots 560 columns wide and 192 rows
deep. There are 16 colors available for use with double high
resolution graphics (see Table 2-7).

Double high-resolution graphics is a bit-mapping of the low-order
seven bits of the bytes in the main-memory and auxiliary-memory
pages at $2000-$3FFF. The bytes in the main-memory and
auxiliary-memory pages are interleaved in exactly the same manner
as the characters in 80-column text: of each pair of identical
addresses, the auxiliary-memory byte is displayed first, and the
main-memory byte is displayed second. Horizontal resolution is
560 dots when displayed on a monochrome monitor.

The video display generator 25

Unlike high-resolution color, double high-resolution color has no
restrictions on which colors can be adjacent. Color is determined
by any four adjacent dots along a line. Think of a four-dot-wide
window moving across the screen: at any given time, the color
displayed will correspond to the four-bit value from Table 2-7 that
corresponds to the window's position (Figure 2-10). Effective
horizontal resolution with color is 140 (560 divided by 4) dots per
line.

To use Table 2-7, divide the display column number by four, and
use the remainder to find the correct column in the table: abO is a
byte residing in auxiliary memory corresponding to a remainder
of zero (byte 0, 4, 8, and so on); mbl is a byte residing in main
memory corresponding to a remainder of one (byte 1, 5, 9, and so
on); and similarly for ab3 and mb4.

Table 2-7
Double high-resolution graphics colors

Repeated
Color abO mbl ab2 mbl bit pattern

Black $00 $00 $00 $00 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Gray 1 $2A $55 $2A $55 0101

· Green $66 $4C $19 $33 0110
Yellow $6E $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $66 $4C 1001
Gray 2 $55 $2A $55 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $6E $5D 1101
Aqua $77 $6E $5D $3B 1110
White $7F $7F $7F $7F 1111

26 Chapter 2: Built-In 1/0 Devices

Video display pages
The Apple Ile generates its video displays using data stored in
specific areas in memory. These areas, called display pages, serve
as buffers where your programs can put data to be displayed. Each
byte in a display buffer controls an object at a certain location on
the display. In text mode, the object is a single character; in low
resolution graphics, the object is two stacked colored blocks; and in
high-resolution and double high-resolution modes, it is a line of
seven adjacent dots.

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1 and
text Page 2, and they are located at 1024-2047 (hexadecimal
$0400-$07FF) and 2048-3071 ($0800-$0BFF) in main memory.
Normally, only Page 1 is used, but you can put text or graphics data
into Page 2 and switch displays instantly. Either page can be
displayed as 40-column text, low-resolution graphics, or mixed
mode (four rows of text at the bottom of a graphics display).

The 8()-column text mode displays twice as much data as the 40-
column mode-1920 bytes-but it cannot switch pages. The 80-
column text display uses a combination page made up of text Page 1
in main memory plus another page in auxiliary memory located on
the 80-column text card. This additional memory is not the same as
text Page 2-in fact, it occupies the same address space as text
Page 1, and there is a special soft switch that enables you to store
data into it. (See the next section, "Display Mode Switching.") The
built-in firmware I/0 routines, described in Chapter 3, take care of
this extra addressing automatically; that is one reason to use those
routines for all your normal text output.

The high-resolution graphics mode also has two display pages, but
each page is 8192 bytes long. In the 40-column text and low
resolution graphics modes each byte controls a display area seven
dots wide by eight dots high. In high-resolution graphics mode
each byte controls an area seven dots wide by one dot high. Thus, a
high-resolution display requires eight times as much data storage,
as shown in Table 2-8.

The double high-resolution graphics mode uses high-resolution
Page 1 in both main and auxiliary memory. Each byte in those
pages of memory controls a display area seven dots wide by one dot
high. This gives you 560 dots per line in black and white, and 140
dots per line in color. A double high-resolution display requires
twice the total memory as high-resolution graphics, and 16 times as
much as a low-resolution display.

The video display generator 27

Table 2-8
Video display page locations

Lowest address Highest address
Display

Display mode page Hex Dec Hex Dec

40-column text, 1 $0400 1024 $07FF 2047
low-resolution 2• $0800 2048 $0BFF 3071
graphics

80-column text 1 $0400 1024 $07FF 2047
2• $0800 2048 $0BFF 3071

High-resolution 1 $2000 8192 $3FFF 16383
graphics 2 $4000 16384 $5FFF 24575

Double high- lt $2000 8192 $3FFF 16383
resolution 2t $4000 16384 $5FFF 24575
graphics

• This is not supported by firmware; for instructions on how to switch
pages, refer to the next section, "Display Mode Switching.•

t See the section "Double High-Resolution Graphics" earlier in this
chapter.

Display mode switching
You select the display mode that is appropriate for your application
by reading or writing to a reserved memory location called a soft
switch. In the Apple Ile, most soft switches have three memory
locations reserved for them: one for turning the switch on, one for
turning it off, and one for reading the current state of the switch.

Table 2-9 shows the reserved locations for the soft switches that
control the display modes. For example, to switch from mixed
mode to full-screen graphics in an assembly-language program,
you could use the instruction

STA $C052

To do this in a BASIC program, you could use the instruction

POKE . 49234,0

Some of the soft switches in Table 2-9 must be read, some must be
written to, and for some you can use either action. When writing to a·
soft switch, it doesn't matter what value you write; the action occurs
when you address the location, and the value is ignored.

28 Chapter 2: Built-In 1/0 Devices

Table 2-9
Display soft switches

Name Action Hex Function

ALTCHAR w $COOE Off: display text using
primary character set

ALTCHAR w $COOF On: display text using
alternate character set

RDALTCHAR R7 $C01E Read ALTCHAR switch
(1 =on)

SOCOL w $COOC Off: display 40 columns

SOCOL w $COOD On: display 80 columns

RDSOCOL R7 $C01F Read SOCOL switch (1 = on)

SOSTORE w $COOO Off: cause PAGE2 on to
select auxiliary RAM

SOSTORE w $C001 On: allow PAGE2 to switch
main RAM areas

RDSOSTORE R7 $C018 Read SOSTORE switch
(1 =on)

PAGE2 R/W $C054 Off: select Page 1

PAGE2 R/W $C055 On: select Page 2 or, if
SOSTORE on, Page 1 in
auxiliary memory

RDPAGE2 R7 $C01C Read PAGE2 switch (1 =on)

TEXT R/W $C050 Off: display graphics or, if
MIXED on, mixed

TEXT R/W $C051 On: display text

RD TEXT R7 $C01A Read TEXT switch (1 = on)

MIXED R/W $C052 Off: display only text or only
graphjcs

MIXED R/W $C053 On: if TEXT off, display text
and graphics

RD MIXED R7 $C01B Read MIXED switch (1 = on)

HIRES R/W $C056 Off: if TEXT off, display low-
resolution graphics

The video display generator 29

Table 2-9 (continued)
Display soft switches

Name Action Hex Function

HIRES R/W $C057 On: if TEXT off, display
high-resolution or, if
DHIRES on, double high-
resolution graphics

RD HIRES R7 $C01D Read HIRES switch (1 = on)

IOUDIS w $C07E On: disable IOU access for
addresses $C058 to $C05F;
enable access to DHIRES
switch•

IOUDIS w $C07F Off: enable IOU access for
addresses $C058 to $C05F;
disable access to DHIRES
switch*

RDIOUDIS R7 $C07E Read IOUDIS switch (1 = off)t

DHIRES R/W $COSE On: if IOUDIS on, turn on
double high resolution

DHIRES R/W $C05F Off: if IOUDIS on, turn off
double high resolution

RDDHIRES R7 $C07F Read DHIRES switch
(1 = on)t

VBL R7 $C091 Vertical blanking

Note: W means write anything to the location, R means read the location,
RIW means read or write, and R7 means read the location and check bit 7.
• The firmware normally leaves IOUDIS on. See also t.
t Reading or writing any address in the range $C070-$C07F also triggers

the paddle timer and resets VBLINT (Chapter 7).

•:• By the way: You may not need to deal with these functions by
reading and writing directly to the memory locations in
Table 2-9. Many of the functions shown here are selected
automatically if you use the display routines in the various high
level languages on the Apple Ile.

30 Chapter 2: Built-In 1/0 Devices

For a full description of the way
the Apple lie handles its display
memory, refer to the section
"Display Memory Addressing· in
Chapter 7.

Any time you read a soft switch, you get a byte of data. However, the
only information the byte contains is the state of the switch, and this
occupies only one bit-bit 7, the high-order bit. The other bits in
the byte are unpredictable. If you are programming in machine
language, the switch setting is the sign bit; as soon as you read the
byte, you can do a Branch Plus if the switch is off, or Branch Minus
if the switch if on.

If you read a soft switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is on, the
value will be equal to or greater than 128; if the switch is off, the
value will be less than 128.

Addressing display pages directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write
statements that control the text and graphics displays. Similarly, if
you are programming in assembly language, you may be able to use
the display features of the built-in I/0 firmware. You should store
directly into display memory only if the existing programs can't
meet your requirements.

The display memory maps are shown in Figures 2-6, 2-7, 2-8, 2-9,
and 2-10. All the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as rows
of 40 contiguous bytes, but the rows themselves are not stored at
locations corresponding to their locations on the display. Instead,
the display address is transformed so that three rows that are eight
rows apart on the display are grouped together and stored in the
first 120 locations of each block of 128 bytes ($80 hexadecimal). By
folding the display data into memory this way, the Apple Ile, like
the Apple II, stores all 960 characters of displayed text within lK
bytes of memory.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store, because
eight rows of dots occupy the same space on the display as one row
of characters. The subset consisting of all the first rows from the
groups of eight is stored in the first 1024 bytes of the high-resolution
display page. The subset consisting of all the second rows from the
groups of eight is stored in the second 1024 bytes, and so on for a
total of 8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the high-resolution display page contains one row of
dots out of every group of eight rows. The individual rows are stored
in sets of three 40-byte rows, the same way as the text display.

The video display generator 31

For more details about tt)e way
the displays are generated, see
Chapter 7.

All of the display modes except 00-column mode and double high
resolution graphics mode can use either of two display pages. The
display maps show addresses for each mode's Page 1 only. To
obtain addresses for text or low-resolution graphics Page 2, add
1024 ($400); to obtain addresses for high-resolution Page 2, add
8192 ($2000).

The 00-column display and double higl:·resolution graphics mode
work a little differently. Half of the data is stored in the normal text
Page-1 memory, and the other half is stored in memory on the 80-
column text card using the same addresses. The display circuitry
fetches bytes from these two memory areas simultaneously and
displays them sequentially: first the byte from the 00-column text
card memory, then the byte from the main memory. The main
memory stores the characters in the odd columns of the display,
and the 00-column text card memory stores the characters in the
even columns.

To store display data on the 00-column text card, first turn on the
OOSTORE soft switch by writing to location 49153 (hexadecimal
$C001 or complementary -16383). With OOSTORE on, the page
select switch, P AGE2, selects between the portion of the 00-column
display stored in Page 1 of main memory and the portion stored in
the 00-column text card memory. To select the 80-column text
card, turn the PAGE2 soft switch on by reading or writing at location
49237.

32 Chapter 2: Built-In 1/0 Devices

0 $400 1024

1 $480 1152

2 $500 1280

3 $580 1408

4 $600 1536

5 $680 1664
6 $700 1792

7 $780 1920

8 $428 1064

9 $4A8 1192

10 $528 1320

11 $5A8 1448

12 $628 1576

13 $6A8 1704

14 $728 1832
15 $7A8 1960

16 $450 1104
17 $400 1232
18 $550 1360

19 $500 1488

20 $650 1616
21 $600 1744
22 $750 1872
23 $700 2000

Figure 2-6
Map of 40-column text display

The video display generator 33

Main Memory
SOO SOI $02 $03 $04 $65 $06 1

Row 1--i o.-- 1,......, 2r:-i 3 L"'1 4 ,... 5,....., 6,.....,
\ $20 $21 $22 $23 $24 $25 S26 S27J

;-- 32,...., 33,...., 34,......, 35,......, 36,......, 37,......, 38,...., 39

0 $400 1024 \
1 $480 1152 l ml

,µ,]
2 $500 1280

3 $580 1408

4 $600 1536

5 $680 1664 ~ +

6 $700 1792

7 $780 1920

8 $428 1064

9 $4A8 1192 'I
10 $528 1320 \
11 $5A8 1448

12 $628 1576

13 $6A8 1704

14 $728 1832

15 $7A8 1960

16 $450 1104

17 $400 1232 '! ,, 1 k

18 $550 1360 L
19 $500 1488 I - I

20 $650 1616 I

21 $600 1744 +I rs j

22 $750 1872 t
23 $700 2000

~~ iol102 ~ !03104 ~ I05 - $06- $07
12 34 5 6 7

Auxiliary Memory j

l _C $20- $21-$22-$23-$24-$25-$26-$27
32 33 34 35 36 37 38 39

Figure 2-7
Map of 80-column text display

34 Chapter 2: Built-In 1/0 Devices

0 $400 1024

2 $480 1152

4 $500 1280

6 $580 1408

8 $600 1536

10 $680 1664
12 $700 1792

14 $780 1920

16 $428 1064

18 $4A8 1192

20 $528 1320

22 $5A8 1448
24 $628 1576

26 $6A8 1704

28 $728 1832

30 $7A8 1960

32 $450 1104

34 $400 1232

36 $550 1360
38 $500 1488

40 $650 1616

42 $600 1744
44 $750 1872
46 $700 2000

Figure 2-8
Map of low-resolution graphics display

The video display generator 35

o - ~~~~=~oom<~uow~o - ~~~~=~oo=< ~uow~o - ~~~~= ~
~£££££~£££££££££~~;;;~~~~~~~;~~;~~~~~~~~

~w o - ~~~~=~oo=s = ~~=~~~~~~~~~~~~~~~g@~~~~~~~~

0 $2000 8192

1 $2080 8320

2 $2100 8448

3 $2180 8576

4 $2200 8704

5 $2280 8832

6 $2300 8960

7 $2380 9088

8 $2028 8232

9 $20A8 8360

10 $2128 8488

~ 11 $21A8 8616 -........._
12 $2228 8744 [1 ---
13 $22A8 8872 ' l l l J + 0 +$0000

14 $2328 9000 I $23A8 9128 ~
+1024 +$0400

15

16 $2050 8272 ' I +2048 +$0800
17 $2000 8400
18 $2150 8528 ~ I +3072 +$OCOO

J 19 $2100 8656

I 20 $2250 8784
+4096 +$1000

21 $2200 8912 ~ I +5120 +$1400
22 $2350 9040 ~
23 $2300 9168 1 I +6144 +$1800

l I I J J +7168 +$1COO

Figure 2-9
Map of high-resolution graphics display

36 Chaoter 2: Built-In 1/0 Devices

Row
0 $2000 8192

1 $2080 8320

2 $2100 8448

3 $2180 8576

4 $2200 8704

5 $2280 8832

6 $2300 8960

7 $2380 9088

8 $2028 8232

9 $20A8 8360

10 $2128 8488

11 $21A8 8616

12 $2228 87 44

13 $22A8 8872

14 $2328 9000

15 $23A8 9128

16 $2050 8272

17 $2000 8400

18 $2150 8528

19 $2100 8656

20 $2250 8784

21 $2200 8912

22 $2350 9040

23 $2300 9168

Figure 2-10

l-"-i~-+!ll!il-

r-t'i"iil-~!it-l~~i:':t-T.t'!'lr-t;jiii-

4 5

Map of double high-resolution graphics display

+ 1024 +$0400

+2048 +$0800

+3072 +$0COO

+4096 +$1000

+5120 +$1400

+6144 +$1800

+7168 +$1COO ~

The video display generator 37

Secondary inputs and outputs
In addition to the primary I/0 devices-the keyboard and
display-there are several secondary input and output devices in
the Apple Ile. These devices are

o the speaker (output)

o cassette input and output

o annunciator outputs

o strobe output

o switch inputs

o analog (hand control) inputs

These devices are similar in operation to the soft switches described
in the preceding section: you control them by reading or writing to
dedicated memory locations. Action takes place any time your
program reads or writes to one of these locations; information
written is ignored.

Important Some of these devices toggle-change state-each time they
are accessed. If you write using an Indexed store operation,

Electrical specifications of the
speaker circuit appear In
Chapter 7.

the Apple Ila's microprocessor activates the address bus twice
during successive clock cycles, causing a device that toggles
each time It Is addressed to end up back In Its original state. For
this reason, you should read, rather than write, to such
devices.

The speaker
The Apple Ile has a small1>peaker mounted toward the front of the
bottom plate. The speaker is connected to a soft switch that toggles;
it has two states, off and on, arid it changes from one to the other
each time it is accessed. (At low frequencies, less than 400 Hz or so,
the speaker clicks only on every other access.)

If you switch the speaker once, it emits a dick; to make longer
sounds, you access the speaker repeatedly. You should always use a
read operation to toggle the speaker. If you write to this soft switch,
it switches twice in rapid succession. The resulting pulse is so short
that the speaker doesn't have time to respond; it doesn't make a
sound.

38 Chapter 2: Built-In 1/0 Devices

BELL l Is described In Appendix B.

Detailed electrical specifications
for the cassette input and
output are given In Chapter 7.

WRITE Is described in Appendix B.

The soft switch for the speaker uses memory location 49200
(hexadecimal $C030). From Integer BASIC, use the
complementary address -16336. You can make various tones and
buzzes with the speaker by using combinations of timing loops in
your program. There is also a routine in the built-in firmware to
make a beep through the speaker. This routine is named BELLI.

Cassette input and output

There are two miniature phone jacks on the back panel of the
Apple Ile. You can use a pair of standard cables with miniature
phone plugs to connect an ordinary cassette tape recorder to the
Apple Ile and save programs and data on audio cassettes.

The phone jack marked with a picture of an arrow pointing toward a
cassette is the output jack. It's connected to a toggled soft switch, like
the speaker switch described above. The signal at the phone jack
switches from 0 to 25 millivolts or from 25 millivolts to 0 each time
you access the soft switch.

If you connect a cable from this jack to the microphone input of a
cassette tape recorder and switch the recorder to record mode, the
signal changes you produce by accessing this soft switch will be
recorded on the tape. The cassette output switch uses memory
location 49184 (hexadecimal $C020; complementary value
-16352). Like the speaker, this output will toggle twice if you write to
it, so you should only use read operations to control the cassette
output.

The standard method for writing computer data on audio tapes uses
tones with two different pitches to represent the binary states zero
and one. To store data, you convert the data into a stream of bits
and convert the bits into the appropriate tones. To save you the
trouble of actually programming the tones, and to ensure
consistency among all Apple II cassette tapes, there is a built-in
routine named WRITE for producing cassette data output.

The phone jack marked with a picture of an arrow coming from a
cassette is the input jack. It accepts a cable from the cassette
recorder's earphone jack. The signal from the cassette is one volt
(peak-to-peal<) audio. Each time the instantaneous value of this
audio signal changes from positive to negative, or vice versa, the
state of the cassette input circuit changes from zero to one or vice
versa. You can read the state of this circuit at memory location
49248 (hexadecimal $C060, or complementary decimal -16288).

Secondary Inputs and outputs 39

READ is described In Appendix B.

Complete electrical
specifications of these Inputs
and outputs are given In
Chapter 7.

For electrical specifications of
the annunciator outputs. refer
to Chapter 7.

When you read this location, you get a byte, but only the high-order
bit (bit 7) is valid. If you are programming in machine language,
this is the sign bit, so you can perform a Branch Plus or Branch
Minus immediately after reading this byte. BASIC is too slow to keep
up with the audio tones used for data recording on tape, but you
don't need to write the program: there is a built-in routine named
READ for reading data from a cassette.

The hand control connector signals
Several inputs and outputs are available on a 9-pin D-type miniature
connector on the back of the Apple Ile: three one-bit inputs, or
switches, and four analog inputs. These signals are also available on
the 16-pin IC connector on the main circuit board, along with four
one-bit outputs and a data strobe. You can access all of these signals
from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin
connector. The rotary controls use two analog inputs, and the push
buttons use two one-bit inputs. However, you can also use these
inputs and outputs for many other jobs. For example, two analog
inputs can be used with a two-axis joystick. Table 7-19 shows the
connector pin numbers.

Annunciator outputs

The four one-bit outputs are called annunctators. Each annunciator
can be used to turn a lamp, a relay, or some similar electronic
device on and off.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-10. Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the second
location turns the annunciator on. There is no way to read the state
of an annunciator.

40 Chapter 2: Built-In 1/0 Devices

Table 2-10
Annunciator memory locations

Annunciator Address

No. Pin" State Decimal Hex

0 15 Off 49240 -16296 $C058
On 49241 -16295 $C059

1 14 Off 49242 -16294 $C05A
On 49243 -16293 $C05B

2 13 Off 49244 -16292 $C05C
On 49245 -16291 $C05D

3 12 Off 49246 -16290 $COSE
On 49247 -16289 $C05F

• Pin numbers given are for the 16-pin IC connector on the circuit board.

Strobe output

The strobe output is normally at +5 volts, but it drops to zero for
about half a microsecond any time its dedicated memory location
is accessed. You can use this signal to control functions such as data
latching in external devices. If you use this signal, remember that
memory is addressed twice by a write; if you need only a single
pulse, use a read operation to activate the strobe. The memory
location for the strobe signal is 49216 (hexadecimal $C040 or
complementary -16320).

Switch inputs

The three one-bit inputs can be connected to the output of another
electronic device or to a pushbutton. When you read a byte from
one of these locations, only the high-order bit-bit 7-is valid
information; the rest of the byte is undefined. From machine
language, you can do a Branch Plus or Branch Minus on the state of
bit 7. From BASIC, you read the switch with a PEEK and compare
the value with 128. If the value is 128 or greater, the switch is on.

The memory locations for these switches are 49249 through 49251
(hexadecimal $C061 through $C063, or complementary -16287
through-16285), as shown in Table 2-12. Switch 0 and switch 1 are
permanently connected to the Open Apple and Solid Apple (or
Option, on the extended keyboard Ile) keys on the keyboard; these
are the ones normally connected to the buttons on the hand
controls. Some software for the older models of the Apple II uses
the third switch, switch 2, as a way of detecting the Shift key. This
technique requires a hardware modification known as the single
wire Shift-key mod.

Secondary inputs and outputs 41

You should be sure that you really need the Shift-key mod before
you go ahead and do it. It probably is not worth it unless you have a
program that requires the Shift-key mod that you cannot either
replace or modify to work without it.

Extended keyboard lie The extended keyboard lie already has the single-wire Shift-key
mod hardwired on the logic board.

Warning If you make the Shift-key modification and connect a joystick
or other hand control that uses switch 2, you must be careful
never to close the switch and press Shift at the same time:
doing so produces a short circuit that causes the power supply
to turn off. When this happens, any programs or data In the
computer's Internal memory are lost.

Refer to the section "Game 1/0
Signals" In Chapter 7 for details.

<- Shift-key mod: To perform this modification on your
Apple Ile, all you have to do is solder across the broken
diamond labeled X6 on the main circuit board. Remember to
turn off the power before changing anything inside the
Apple Ile. Also remember that changes such as this are at your
own risk and may void your warranty.

Analog inputs

The four analog inputs are designed for use with 150K ohm variable
resistors or potentiometers. The variable resistance is connected
between the +5V supply and each input, so that it makes up part of a
timing circuit. The circuit changes state when its time constant has
elapsed, and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset the
timing circuits. Accessing memory location 49264 (hexadecimal
$C070 or complementary -16272) does this. As soon as you reset
the timing circuits, the high bits of the bytes at locations 49252
through 49255 (hexadecimal $C064 through $C067 or
complementary -16284 through -16281) are set to 1. If you PEEK at
them from BASIC, the values will be 128 or greater. Within about 3
milliseconds, these bits will change back to ~byte values less than
128-and remain there until you reset the timing circuits again. The
exact time each of the four bits remains high is directly
proportional to the resistance connected to the corresponding
input. If these inputs are open-no resistances are connected-the
corresponding bits may remain high indefinitely.

42 Chapter 2: Built-In 1/0 Devices

PREAD Is described In Appendix B.

To read the analog inputs from machine language, you can use a
program loop that resets the timers and then increments a counter
until the bit at the appropriate memory location changes to 0, or
you can use the built-in routine named PREAD. High-level
languages, such as BASIC, also include convenient means of
reading the analog inputs: refer to your language manuals.

Summary of secondary 1/0 locations
Table 2-11 shows the memory locations for all of the built-in I/O
devices except the keyboard and display. As explained earlier,
some soft switches should only be accessed by means of read
operations; those switches are marked.

Table 2-11
Secondary 1/0 memory locations

Address

Function Decimal Hex Access

Speaker 49200 -16336 $C030 Read only
Cassette out 49184 -16352 $C020 Read only
Cassette in 49248 -16288 $C060 Read only
Annunciator 0 on 49241 -16295 $C059
Annunciator 0 off 49240 -16296 $C058
Annunciator 1 on 49243 -16293 $C05B
Annunciator 1 off 49242 -16294 $C05A
Annunciator 2 on 49245 -16291 $C05D
Annunciator 2 off 49244 -16292 $C05C
Annunciator 3 on 49247 -16289 $C05F
Annunciator 3 off 49246 -16290 $C05E
Strobe output 49216 -16320 $C040 Read only
Switch input 0 (L!) 49249 -16287 $C061 Read only
Switch input 1 (ti) 49250 -16286 $C062 Read only
Switch input 2 · 49251 -16285 $C063 Read only
Analog input reset 49264 -16272 $C070
Analog input 0 49252 -16284 $C064 Read only
Analog input 1 49253 -16283 $C065 Read only
Analog input 2 49254 -16282 $C066 Read only
Analog input 3 49255 -16281 $C067 Read only

Note: For connector identification and pin numbers, refer to Tables 7-18
and 7-19.

Secondary Inputs and outputs 43

Chapter 3

Built-in 1/0
Firmware

45

The Monitor, or System Monitor.
is a computer program that is
used to operate the computer at
the machine-language level.

Almost every program on the Apple Ile takes input from the
keyboard and sends output to the display. The Monitor and the
Applesoft and Integer BASICs do this by means of standard 1/0
subroutines that are built into the Apple Ile's firmware. Many
application programs also use the standard 1/0 subroutines, but
Pascal programs do not; Pascal has its own 1/0 subroutines.

This chapter describes the features of these subroutines as they are
used by the Monitor and by the BASIC interpreters, and tells you
how to use the standard subroutines in your assembly-language
programs.

Important High-level languages already Include convenient methods for
handling most of the functions described In this chapter. You
should not need to use the standard 1/0 subroutines In your
programs unless you are programming in assembly language.

Table 3-1
Monitor firmware routines

LocatlonO Name Description

$C305 BASICIN With 80-column firmware active,
displays solid, blinking cursor;
accepts character from keyboard

$C307 BASICO UT Displays a character on the screen;
used when the 80-column firmware is
active (Chapter 3)

$FC9C CLREOL Clears to end of line from current
cursor position

$FC9E CLEOLZ Clears to end of line using contents of
Y register as cursor position

$FC42 CLREOP Clears to bottom of window

$F832 CLRSCR Clears the low-resolution screen

$F836 CLRTOP Clears top 40 lines of low-resolution
screen

$FDED COUT Calls output routine whose address is
stored in CSW (normally COUTl,
Chapter 3)

$FDFO COUTl Displays a character on the screen
(Chapter 3)

46 Chapter 3: Built-In 1/0 Firmware

Table 3-1 (continued)
Monitor firmware routines

Locatlono Name Description

$FD8E CROUT Generates a carriage return character

$FD8B CROUTl Clears to end of line, then generates a
carriage return character

$FD6A GETIN Displays the prompt character;
accepts a string of characters by
means of RDKEY

$F819 HLINE Draws a horizontal line of blocks

$FC58 HOME Clears the window and puts cursor in
upper-left corner of window

$FD1B KE YIN With 80-column firmware inactive,
displays checkerboard cursor;
accepts character from keyboard

$F800 PLOT Plots a single low-resolution block on
the screen

$F94A PRBL2 Sends 1 to 256 blank spaces to the
output device

$FDDA PR BYTE Prints a hexadecimal byte

$FF2D PRERR Sends ERR and Control-G to the
output device

$FDE3 PRHEX Prints 4 bits as a hexadecimal number

$F941 PRNTAX Prints contents of A and X in
hexadecimal

$FDOC RD KEY Displays blinking cursor; goes to
standard input routine, normally
KEYIN or BASICIN

$F871 SCRN Reads color value of a low-resolution
block

$F864 SETCOL Sets the color for plotting in low
resolution

$FC24 VTABZ Sets cursor vertical position

$F828 VLINE Draws a vertical line of low-resolution
blocks

Chapter 3: Built-In 1/0 Firmware 47

AUXMOVE and XFER are
described In the section
·Auxiliary-Memory Subroutines·
in Chapter 4.

The standard 1/0 subroutines listed in Table 3-1 are fully described
in this chapter. The Apple Ile firmware also contains many other
subroutines that you might find useful. Those subrouiioes are
described in Appendix B. Two of the built-in subroutines,
AUXMOVE and XFER, can help you use the optional auxiliary
memory.

Using the 1/0 subroutines
Before you use the standard 1/0 subroutines, you should
understand a little about the way they are used. The Apple Ile
firmware operates differently when an option such as an 80-column
text card is used. This section describes general situations that affect
the operation of the standard 1/0 subroutines. Specific instances
are described in the sections devoted to the individual subroutines.

Apple II compatibility

Compared with older Apple II models, the Apple Ile has some
additional keyboard and display features. To run programs that
were written for the older models, you can make the Apple Ile
resemble an Apple II Plus by turning those features off. The features
that you can turn off and on to put the Apple Ile into and out of
Apple II mode are listed in Table 3-2.

Table 3-2
Apple II mode

Apple lie

Keyboard Uppercase and lowercase

Display characters Inverse and normal only

Apple II mode

Uppercase only

Flashing, inverse,
and normal

Display size 40-column; also 80-column 40-column only
with optional card

If the Apple Ile cioes not have an 80-column text card installed in
the auxiliary slot, it is almost in Apple II mode as soon as you turn it
on or reset it One exception is the keyboard, which is both
uppercase and lowercase.

48 Chapter 3: Built-In 1/0 Firmware

Original lie On an original Apple lie, statements In Integer BASIC, Applesoft,
and DOS 3.3 commands must be typed In uppercase letters. To
be compatible with older software. you should switch the
Apple lie keyboard to uppercase by pressing Caps Lock.

The primary and alternate
character sets are described In
Chapter 2 In the section ·r ext
Character Sets.·

Original lie

The ALTCHAR soft switch is
described In Chapter 2.

Another feature on the Apple Ile that differs from the Apple II is the
displayed character set. An Apple II displays only uppercase
characters, but it displays them in three ways: normal, inverse, and
flashing. The Apple Ile can display uppercase characters all three
ways, and it can display lowercase characters in the normal way.
This combination is called the primary character set. When the
Apple Ile is first turned on or reset, it displays the primary character
set.

The Apple Ile has another character set, called the alternate
character set, that displays a full set of normal and inverse
characters, with the inverse uppercase characters between $40 and
$SF replaced on enhanced Apple Ile's with MouseText characters.

In the original Apple lie, uppercase Inverse characters appear
In place of the MouseText characters of the enhanced Apple lie
and the Apple lie.

You can switch character sets at any time by means of the ALTCHAR
soft switch.

The 80-column firmware

There are a few features that are normally available only with the 80-
column display. These features are identified in Table 3-3b and
Table 3-6. The firmware that supports these features is built into the
Apple Ile, but it is normally active only if an 80-column text card is
installed in the auxiliary slot.

When you turn on power or reset the Apple Ile, the 80-column
firmware is inactive and the Apple Ile displays the primary
character set, even if an 80-column text card is installed. When you
activate the 80-column firmware, it switches to the alternate
character set.

The built-in 80-column firmware is implemented as if it were
installed in expansion slot 3. Programs written for an Apple II or
Apple II Plus with an 00-column text card installed in slot 3 usually
will run properly on a Apple Ile with an 00-column text card in the
auxiliary slot.

Using the 1/0 subroutines 49

See the section ·switching 1/0
Memory· In Chapter 6 for
details.

Important

SLOTC3ROM is described In
Chapter 6 In the section
·switching 1/0 Memory:

. If the Apple Ile has an 8()-column text card and you want to use the
8()-column display, you can activate the built-in firmware from
BASIC by typing PRf3.

To activate the 8()-column firmware from the Monitor, press 3, then
Control-P. Notice that this is the same procedure you use to activate
a card in expansion slot 3. Any card installed in the auxiliary slot
takes precedence over a card installed in expansion slot 3.

Even though you activated the 80-column firmware by typing
PR#3. you should never deactivate It by typing PR#O. because
that just disconnects the firmware, leaving several soft switches
still set for 80-column operation. Instead, press the sequence
Escape-Q (see Table 3-6).

If there is no 8()-column text card or other auxiliary memory card in
your Apple Ile, you can still activate the 80-column firmware and
use it with a 40-column display. First, set the SLOTC3ROM soft
switch located at $COOA (49162). Then type PRf3 to transfer control
to the firmware.

When the 8()-column firmware is active without a card in the
auxiliary slot, it does not work quite the same as it does with a card.
The functions that clear the display (CLREOL, CLEOLZ, CLREOP,
and HOME) work as if the firmware were inactive: they always clear

For more Information about to the current color. In addition, interrupts are supported only with
interrupts. see Chapter 6. a card installed in the auxiliary slot.

Warning If you do not have an Interface card In either the auxiliary slot
or slot3, don't try to activate the firmware with PR*3 . Typing
PR#3 with no card Installed transfers control to the empty
connector, with unpredictable results.

Programs activate the 80-column firmware by transferring control
to address $C300. If there is no card in the auxiliary slot, you must
set the SLOTC3ROM soft switch first. To deactivate the 80-column
firmware from a program, write a Control-U character via
subroutine COUT.

50 Chapter 3: Built-In 1/0 Firmware

For more Information about the
1/0 links, see the section
"Changing the standard 1/0
Links" In Chapter 6.

The old monitor

Apple II's and Apple II Pluses used a version of the System Monitor
different from the one the Apple Ile uses. It had the same standard
1/0 subroutines, but a few of the features were different; for
example, there were no arrow keys for cursor motion. If you start the
Apple Ile with a DOS or BASIC disk that loads Integer BASIC into
the bank-switched area in RAM, the old Monitor (sometimes called
the Autostart Monitof) is also loaded with it When you type INT

from Applesoft to activate Integer BASIC, you also activate this
copy of the old Monitor, which remains active until you either type
FP to switch back to Applesoft, which uses the new Monitor in ROM,
or type PRf3 to activate the 80-column firmware. Part of the
firmware's initialization procedure checks to see which version of
the Monitor is in RAM. If it finds the old Monitor, it replaces it with
a copy of the new Monitor from ROM. After the firmware has
copied the new Monitor into RAM, it remains there until the next
time you start up the system.

The standard 1/0 links
When you call one of the character 1/0 subroutines (COUT and
RDKEY), the first thing that happens is an indirect jump to an
address stored in programmable memory. Memory locations used
for transferring control to other subroutines are sometimes called
vectors; in this manual, the locations used for transferring control
to the 1/0 subroutines are called 1/0 links. In a Apple Ile running
without a disk operating system, each 1/0 link is normally the
address of the body of the subroutine (COUTl or KEYIN). If a disk
operating system is running, one or both of these links hold the
addresses of the corresponding DOS or ProDOS 1/0 routines
instead. (DOS and ProDOS maintain their own links to the standard
1/0 subroutines.)

By calling the 1/0 subroutines that jump to the link addresses
instead of calling the standard subroutines directly, you ensure that
your program will work properly in conjunction with other software,
such as DOS or a printer driver, that changes one or both of the 1/0
links.

For the purposes of this chapter, we shall assume that the I/0 links
contain the addresses of the standard 1/0 subroutines-COUTl and
KEYIN if the 80-column firmware is off, and BASICOUT and
BASICIN if it is on.

Using the 1/0 subroutines 51

Standard output features
The standard output routine is named COUT, pronounced "C-out,"
which stands for character out. COUT normally calls COUTl,
which sends one character to the display, advances the cursor
position, and scrolls the display when necessary. COUTl restricts
its use of the display to an active area called the text window,
described below.

COUT output subroutine
Your program makes a subroutine call to COUT at memory location
$FDED with a character in the accumulator. COUT then passes
control via the output link CSW to the current output subroutine,
normally COUTl (or BASICOUU, which takes the character in the
accumulator and writes it out. If the accumulator contains an
uppercase or lowercase letter, a number, or a special character,
COUTl displays it; if the accumulator contains a control character,
COUTl either performs one of the special functions described
below or ignores the character.

Each time you send a character to COUTl, it displays the character
at the current cursor position, replacing whatever was there, and
then advances the cursor position one space to the right. If the
cursor position is already at the right edge of the window, COUTl
moves it to the leftmost position on the next line down. If this would
move the cursor position past the end of the last line in the window,
COUTl scrolls the display up one line and sets the cursor position at
the left end of the new bottom line.

The cursor position is controlled by the values in memory locations
36 and 37 (hexadecimal $24 and $25). These locations are named
CH, for cursor horizontal, and CV, for cursor vertical. COUTl does
not display a cursor, but the input routines described below do, and
they use this cursor position. If some other routine displays a
cursor, it will not necessarily put it in the cursor position used by
COUTl.

52 Chapter 3: Built-In 1/0 Firmware

Control characters with COUTl and BASICOUT

COUTl and BASICOUT do not display control characters. Instead,
the control characters listed in Tables 3-3a and 3-3b are used to
initiate some action by the firmware. Other control characters are
ignored. Most of the functions listed here can also be invoked from
the keyboard, either by typing the control character listed or by
using the appropriate escape code, as described in the section
"Escape Codes With KEYIN and BASICIN" later in this chapter. The
stop-list function, described separately, can only be invoked from
the keyboard.

Table 3-3a
Control characters, 80-column firmware off

Control
character

Control-G

Control-H

Control-]

Control-M

Table 3-3b

ASCII
name

BEL

BS

LF

CR

Apple lie
name

Bell

Backspace

Line feed

Return

AcHon taken by COUTl

Produces a 1000 Hz tone
for 0.1 second

Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Moves cursor position
down to next line in
window, scrolls if needed

Moves cursor position to
left end of next line in
window, scrolls if needed

Control characters, 80-column firmware on

Control ASCII Apple lie
character name name AcHon taken by BASICOUT

Control-G BEL Bell Produces a 1000 Hz tone
for 0 .1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Standard output features 53

Table 3-3b (continued)
Control characters. BO-column firmware on

Control ASCII Apple lie
character name name Action taken by BASICOUT

Control-] LF Line feed Moves cursor position
down to next line in
window; scrolls if needed

Control-K• VT Clear EOS Clears from cursor
position to the end of the
screen

Control-P FF Home Moves cursor position to
and clear upper-left corner of

window and clears window

Control-M CR Return Moves cursor position to
left end of next line in
window, scrolls if needed

Control-N• so Normal Sets display format
normal

Control-o• SI Inverse Sets display format
inverse

Control-Q• DCl 40-column Sets display to 40-column

Control-R• DC2 80-column Sets display to 80-column

Control-St DC3 Stop-list Stops listing characters on
the display until another
key is pressed

Control-u• NAK Quit Deactivates 80-column
video firmware

Control-V' SYN Scroll Scrolls the display down
one line, leaving the
cursor in the current
position

Control-w• ETB Scroll-up Scrolls the display up one
line, leaving the cursor in
the current position

Control-X CAN Disable Disables MouseText
MouseText character display; use

inverse uppercase

54 Chapter 3: Built-In 1/0 Firmware

Table 3-3b (continued)
Control characters. 80-column firmware on

Control ASCII Apple lie
character name name AcHon taken by BASICOUT

Control-Y• EM Home Moves cursor position to
upper-left corner of
window (but doesn't
clear)

Control-z• SUB Clear line Clears the line the cursor
position is on

Control-[ESC Enable Maps inverse
Mouse Text uppercase characters to

MouseText characters

Control-\• FS Forward Moves cursor position one
space space to the right, from

right edge of window,
moves it to left end of line
below

Control-]• GS Clear EOL Clears from the current
cursor position to the end
of the line (that is, to the
right edge of the window)

Control-- us Up Moves cursor up a line, no
scroll

• Doesn't work from the keyboard
t Only works from the keyboard

The stop-list feature
When you are using any program that displays text via COUTl (or
BASICOU1), you can make it stop updating the display by holding
down Control and pressing S. Whenever COUTl gets a carriage
return from the program, it checks to see if you have pressed
Control-S. If you have, COUTl stops and waits for you to press
another key. When you want COUTl to resume, press another key;
COUTl will send the carriage return it got earlier to the display,
then continue normally. The character code of the key you pressed
to resume displaying is ignored unless you pressed Control-C.
COUTl passes Control-C back to the program; if it is a BASIC
program, this enables you to terminate the program while in stop
list mode.

Standard output features 55

The text window

After starting up the computer or after a reset, the firmware uses the
entire display. However, you can restrict video activity to any
rectangular portion of the display you wish. The active portion of
the display is called the text window. COUTl or BASICOUT puts
characters into the window only; when it reaches the end of the last
line in the window, it scrolls only the contents of the window.

You can set the top, bottom, left side, and width of the text window
by storing the appropriate values into four locations in memory.
This enables your programs to control the placement of text in the
display and to protect other portions of the screen from being
written over by new teXt.

Memory location 32 (hexadecimal $20) contains the number of the
leftmost column in the text window. This number is normally 0, the
number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39 (hexadecimal
$27); iri an 80-column display, the maximum value is 79
(hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text
window. For a 40-column display, it is normally 40 (hexadecimal
$28); for an 80-column display, it is normally 80
(hexadecimal $50).

Original lie COUTl truncates the column width to an even value on the
original Apple lie.

Warning On an original Apple lie. be careful not to let the sum of the
window width and the leftmost position lri the window exceed
the width of the display you are using (40 or 80). If this happens.
It Is possible for COUTl to put characters Into memory locations
outside the display page. possibly Into your current program or
data space.

Memory location 34 (hexadecimal $22) contains the number of the
top line of the text window. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the J1Umber of the
bottom line of the screen, plus 1. It is normally 24 (hexadecimal
$18) for the bottom line of the display. Its minimum value is 1.

56 Chapter 3: Built-In 1/0 Firmware

After you have changed the text window boundaries, nothing is
affected until you send a character to the screen.

Warning Any time you change the boundaries of the text window, you
should make sure that the current cursor position (stored at CH
and CV) is Inside the new window. If It Is outSlde, It is possible for
COUTl to put characters Into memory locations outside the
display page, posslbly destroying programs or data.

Table 3-4
Text window memory locations

Table 3-4 summarizes the memory locations and the possible
values for the window parameters.

Normal values Maximum values
Minimum

Location value 40col. 80 col. 40col. 80col.
Window
parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

Left edge 32 $20 00
Width 33 $21 00
Top edge 34 $22 00
Bottom edge 35 $23 01

Table 3-5
Text format control values

Mask value

Dec Hex Display format

255 $FF Normal, uppercase,
and lowercase

127 $7F Flashing, uppercase,
and symbols

63 $3F Inverse, uppercase,
and lowercase

Note: These mask values apply
only to the primary character set
(see text).

$00 00 $00 00 $00 39 $27 79 $4F
$00 40 $28 80 $50 40 $28 80 $50
$00 00 $00 00 $00 23 $17 23 $17
$01 24 $18 24 $18 24 $18 24 $18

Inverse and flashing text
Subroutine COUTl can display text in normal format, inverse
format, or, with some restrictions, flashing format. The display
format for any character in the display depends on two things: the
character set being used at the moment, and the setting of the two
high-order bits of the character's byte in the display memory.

As it sends your text characters to the display; COUTl sets the high
order bits according to the value stored at memory location SO
(hexadecimal $32). If that value is 255 (hexadecimal $FF), COUTl
sets the characters to display in normal format; if the value is 63
(hexadecimal $3F), COUTl sets the characters to inverse format. If
the value is 127 (hexadecimal $7F) and if you have selected the
primary character set, the characters will be displayed in flashing
format. Note that flashing format is not available in the alternate
character set.

Standard output features 57

Important

SWltchlng between character
sets Is described In the section
"Display Mode SWltchlng· In
Chapter 2.

Original lie

For more Information on GETLN,
see the section "Editing With
GETLN" later In this chapter.

To control the display format of the characters, routine COUTl uses
the value at location 50 as a logical mask to force the setting of the
two high-order bits of each character byte it puts into the display
page. It does this by performing the logical AND function on the
data byte and the mask byte. The result byte contains a 0 in any bit
that was 0 in the mask. BASICOUT, used when the 8C>-column
firmware is active, changes only the high-order bit of the data.

If the 80-column firmware Is Inactive and you store a mask
value at location 50 with zeros In Its low-order bits. COUTl will
mask out those bits In your text. As a result. some characters
will be transformed Into other characters. You should set the
mask to the values given In Table 3-5 only.

If you set the mask value at location 50 to 127 (heXadecimal $7F),
the high-order bit of each result byte will be 0, and the characters
will be displayed either as lowercase or as flashing, depending on
which character set you have selected. Refer to the tables of display
character sets in Chapter 2. In the primary character set, the next
highest bit, bit 6, selects flashing format with uppercase characters.
With the primary character set you can display lowercase characters
in normal format and uppercase characters in normal, inverse, and
flashing formats. In the alternate character set, bit 6 selects
lowercase or special characters. With the alternate character set you
can display uppercase and lowercase characters in normal and
inverse formats .

On the original Apple lie. the MouseText characters are
replaced by uppercase Inverse characters.

Standard input features
The Apple Ile's firmware includes two different subroutines for
reading from the keyboard. One subroutine is named RDKEY,
which stands for read key. It calls the standard character input
subroutine KEYIN (or BASICIN when the 8C>-column firmware in
active), which accepts one character at a time from the keyboard.

The other subroutine is named GETLN, which stands for get line. By -
making repeated calls to RDKEY, GETLN accepts a sequence of
characters terminated with a carriage return. GETLN also provides
on-screen editing features.

58 Chapter 3: Built-In 1/0 Firmware

Escape mode is described in the
next section, "Escape Codes.·

RDKEY input subroutine
A program gets a character from the keyboard by making a
subroutine call to RDKEY at memory location $FDOC. RDKEY sets
the character at the cursor position to flash, then passes control via
the input link KSW to the current input subroutine, which is
normally KEYIN or BASICIN.

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the
display (normally by using the COUT routine, described earlier).
The cursor displayed by RDKEY is a flashing version of whatever
character happens to be at that position on the screen. It is usually a
space, so the cursor appears as a blinking rectangle.

KEVIN input subroutine
KEYIN is the standard input subroutine when the 80-column
firmware is inactive; BASICIN is used when the 80-column firmware
is active. When called, the subroutine waits until the user presses a
key, then returns with the key code in the accumulator.

If the 80-column firmware is inactive, KEYIN displays a cursor by
alternately storing a checkerboard block in the cursor location,
then storing the original character, then the checkerboard again. If
the firmware is active, BASICIN displays a steady inverse space
(rectangle), unless you are in escape mode, when it displays a plus
sign (+) in inverse format.

KEYIN also generates a random number. While it is waiting for the
user to press a key, KEYIN repeatedly increments the 16-bit number
in memory locations 78 and 79 (hexadecimal $4E and $4F). This
number keeps increasing from 0 to 65535, then starts over again
at 0. The value of this number changes so rapidly that there is no
way to predict what it will be after a key is pressed. A program that
reads from the keyboard can use this value as a random number or
as a seed for a random-number routine.

When the user presses a key, KEYIN accepts the character, stops
displaying the cursor, and returns to the calling program with the
character in the accumulator.

Standard Input features 59

Escape codes with KEVIN and BASICIN

KEYIN has special functions that you invoke by typing escape codes
on the keyboard. An escape code is obtained by pressing Escape,
releasing it, and then pressing some other key. See Table 3-6; the
notation in the table means press Escape, release it, then press the
key that follows.

Table 3-6 includes three sets of cursor-control keys. The first set
consists of Escape followed by A, B, C, or D. The letter keys can be
either uppercase or lowercase. These keys are the standard cursor
motion keys on older Apple II models; they are present on the
Apple Ile primarily for compatability with programs written for old
machines.

Cursor motion in escape mode

The second and third sets of cursor-control keys are listed together
because they activate escape mode. In escape mode, you can keep
using the cursor-motion keys without pressing Escape again. This
enables you to perform repeated cursor moves by holding down the
appropriate key.

When the 80-column firmware is active, you can tell when BASICIN
is in escape mode: it displays a plus sign in inverse format as the
cursor. You leave escape mode by typing any key other than a
cursor-motion key.

The escape codes with the directional arrow keys are the standard
cursor-motion keys on the Apple Ile. The escape codes with the I, J,
K, and M keys are the standard cursor-motion keys on the
Apple II Plus, and are present on the Apple Ile for compatability
with the Apple II Plus. On the Apple Ile, the escape codes with the I,
J, K, and M keys function with either uppercase or lowercase letters.

Table 3-6
Escape codes

Escape code

Escape @

Escape A or a

Escape B orb

60 Chapter 3: Built-In 1/0 Firmware

Function

Clears window and homes cursor
(places it in upper-left corner of
screen), then exits from escape mode

Moves cursor right one line; exits from .
escape mode

Moves cursor left one line; exits from
escape mode

Table 3-6 (continued)
Escape codes

Escape cod•

Escape C or c

Escape Dor d

Escape E ore

Escape For f

Escape I or i
or Escape Up Arrow

Escape] or j
or Escape Left Arrow

Escape K ork
or Escape Right Arrow

Escape Mor m
or Escape Down Arrow

Escape 4

Escape 8

Escape Control-D

Escape Control-E

Escape Control-Q

Function

Moves cursor down one line; exits from
escape mode

Moves cursor up one line; exits from
escape mode

Clears to end of line; exits from escape
mode

Clears to bottom of window; exits from
escape mode

Moves the cursor up one line; remains
in escape mode (see text)

Moves the cursor left one space;
remains in escape mode (see text)

Moves the cursor right one space;
remains in escape mode (see text)

Moves the cursor down one line;
remains in escape mode (see text)

If 80-column firmware is active, switches
to 40-column mode; sets links to
BASICIN and BASICOUT; restores
normal window size; exits from escape
mode

If 80-column firmware is active, switches
to 80-column mode; sets links to
BASICIN and BASICOUT; restores
normal window size; exits from escape
mode

Disables control characters; only
carriage return, line feed, BELL, and
backspace have an effe.ct when printed

Reactivates control characters

If 80-column firmware is active,
deactivates 80-column firmware; sets
links to KEYIN and COUTl; restores
normal window size; exits from escape
mode

Standard Input features 61

Table 3-7
Prompt characters

Prompt Program requesting
character input

? User's BASIC program
(INPUT statement)

Applesoft BASIC
(Appendix D)

> Integer BASIC
(Appendix D)

* Firmware Monitor
(Chapter 5)

GETLN input subroutine
Programs often need strings of characters as input. While it is
possible to call RDKEY repeatedly to get several characters from
the keyboard, there is a more powerful subroutine you can use. This
routine is named GETIN, which stands for get ltne, and it starts at
location $FD6A. Using repeated calls to RDKEY, GETI.N accepts
characters from the standard input subroutine-usually
KEYIN-and puts them into the input buffer located in the memory
page from $200 to $2FF. GETIN also provides the user with on
screen editing and control features, described in the next section,
"Editing With GETIN."

The first thing GETI.N does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the
user that the program is waiting for input. Different programs use
different prompt characters, helping to remind the user which
program is requesting the input. For example, an INPUT statement
in a BASIC program displays a question mark(?) as a prompt. The
prompt characters used by the different programs on the Apple Ile
are shown in Table 3-7.

GETI.N uses the character stored at memory location 51
(hexadecimal $33) as the prompt character. In an assembly
language program, you can change the prompt to any character you
wish. In BASIC, changing the prompt character has no effect,
because both BASIC interpreters and the Monitor restore it each
time they request input from the user.

As you type the character string, GETIN sends each character to the
standard output routine-normally COUTl-which displays it at the
previous cursor position and puts the cursor at the next available
position on the display, usually immediately to the right As the
cursor travels across the display, it indicates the position where the
next character will be displayed.

GETLN stores the characters in its buffer, starting at memory
location $200 and using the X register to index the buffer. GETI.N
continues to accept and display characters until you press Return;
then it clears the remainder of the line the cursor is on, stores the
carriage-return code in the buffer, sends the carriage-return code to
the display, and returns to the calling program.

62 Chapter 3: Built-In 1/0 Firmware

The maximum line length that GE11N can handle is 255 characters.
If the user types more than this, GE11N sends a backslash (\) and a
carriage return to the display, cancels the line it has accepted so far,
and starts over. To warn the user that the line is getting full, GE11N
sounds a bell (tone) at every keypress after the 248th.

Important In the Apple II and the Apple II Plus, the GETLN routine converts
all Inputs to uppercase. GETLN In the Apple lie does not do this.
even In Apple II mode. To get uppercase Input for BASIC. use
Caps Lock.

Editing with GETLN
Subroutine GE11N provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. For an
introduction to editing with these features, refer to the Applesoft
Tutorial. Any program ihat uses GETLN for reading the keyboard
has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GETLN to
cancel the line. GE11N displays a backslash(\) and issues a carriage
return, then displays the prompt and waits for you to type a new
line. GE11N takes the same action when you type more than 255
characters, as described earlier.

Backspace

When you press Left Arrow, GETLN moves its buffer pointer back
one space, effectively deleting the last character in its buffer. It also
sends a backspace character to routine COUT, which moves the
display position and the cursor back one space. If you type another
character now, it will replace the character you backspaced over,
both on the display and in the line buffer. Each time you press Left
Arrow, it moves the cursor left and deletes another character, until
you reach the beginning of the line. If you then press Left Arrow one
more time, you have cancelled the line, and GETLN issues a
carriage return and displays the prompt.

Standard Input features 63

Retype

Right Arrow has a function complementary to the backspace
function. When you press Right Arrow, GETLN picks up the
character at the display position just as if it had been typed on the
keyboard. You can use this procedure to pick up characters that you
have just deleted by backspacing across them. You can use the
backspace and retype functions with the cursor-motion functions to
edit data on the display. (See the earlier section "Cursor Motion in
Escape Mode.")

Monitor firmware support
Table 3-8 summarizes the addresses and function.5 of the video
display support routines the Monitor provides. These routines are
described in the subsections that follow.

Tobie 3-8
Video firmware routines

Location Name Description

$C307 BASICO UT Displays a character on the screen
when 80-column firmware is active

$FC9C CLREOL Clears to end of line from current
cursor position

$FC9E CLEOLZ Clears to end of line using contents of
Y register as cursor position

$FC42 CLREOP Clears to bottom of window

$F832 CLRSCR Clears the low-resolution screen

$F836 CLRTOP Clears top 40 lines of low-resolution
screen

$FDED COUT Calls output routine whose address is
stored in CSW (normally COUTl,
Chapter 3)

$FDFO COUTl Displays a character on the screen
(Chapter 3)

$FD8E CROUT Generates a carriage return character

$FD8B CROUTl Clears to end of line, then generates a
carriage return character

64 Chapter 3: Built-In 1/0 Firmware

Table 3-8 (continued)
Video firmware routines

Location Name

$F819 HLINE

$FC58 HOME

$F800 PLOT

$F94A PRBL2

$FDDA PRBYTE

$FF2D PRERR

$FDE3 PRHEX

$F941 PRNTAX

$F871 SCRN

$F864 SETCOL

$FC24 VTABZ

$F828 VLINE

BASICOUT, $C307

Description

Draws a horizontal line of blocks

Clears the window and puts cursor in
upper-left corner of window

Plots a single low-resolution block on
the screen

Sends 1 to 256 blank spaces to the
output device whose address is in CSW

Prints a hexadecimal byte

Sends ERR and Control-G to the output
device whose output routine address is
inCSW

Prints 4 bits as a hexadecimal number

Prints contents of A and X in
hexadecimal

Reads color value of a low-resolution
block on the screen

Sets the color for plotting in low
resolution

Sets cursor vertical position (Setting CV
at location $25 does not change
vertical positon until a carriage return.)

Draws a vertical line of low-resolution
blocks

BASICOUT is essentially the same as COUTl-BASICOUT is used
instead of COUTl when the 80-column firmware is active.
BASICOUT displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask Oocation
$32). BASICOUT handles control characters; see Table 3-3b.
When it returns control to the calling program, all registers are
intact.

Monitor firmware support 65

See the section ·control
Characters With COUTl and
BASICOUT" earlier In this
chapter for more Information on
COUTl.

CLREOL, $FC9C

CLREOL clears a text line from the cursor position to the .right edge
of the window. This routine destroys the contents of A and Y.

CLEOLZ, $FC9E

CLEOLZ clears a text line to the right edge of the window, starting at
the location given by base address BASL, which is indexed by the
contents of the Y register. This routine destroys the contents of A
and Y.

CLREOP, $FC42

CLREOP clears the text window from the cursor position to the
bottom of the window. This routine destroys the contents of A
and Y.

CLRSCR, $F832

CLRSCR clears the low-resolution graphics display to black. If you
call this routine while the video display is in text mode, it fills the
screen with inverse-mode at-sign (@) characters. This routine
destroys the contents of A and Y.

CLRTOP, $F836

CLRTOP is the same as CLRSCR, except that it clears only the top 40
rows of the low-resolution display.

COUT, $FDED

COUT calls the current character output subroutine. (See the
section "COUT Output Subroutine" earlier in this chapter.) The
character to be sent to the output device should be in the
accumulator. COUT calls the subroutine whose address is stored in
CSW Oocations $36 and $37), which is usually the standard
character output subroutine COUTl (or BASICOU1).

COUTl, $FDFO

COUTl displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask
Oocation $32). It handles these control characters: carriage return,
line feed, backspace, and bell. When it returns control to the
calling program, all registers are intact.

66 Chapter 3: Built-In 1/0 Firmware

CROUT, $FD8E

CROUT sends a carriage return to the current output device.

CROUTl, $FD8B

CROUTl clears the screen from the current cursor position to the
edge of the text window, then calls CROUT.

HLINE, $F819

HLlNE draws a horizontal line of blocks of the color set by SETCOL
on the low-resolution graphics display. Call HLINE with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal
coordinate in location $2C. HLINE returns with A and Y scrambled
and X intact.

HOME, $FC58

HOME clears the display and puts the cursor in the upper-left
corner of the screen.

PLOT, $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. Call PLOT with the vertical
coordinate of the line in the accumulator, and its horizontal
position in the Y register. PLOT returns with the accumulator
scrambled, but X and Y intact.

PRBL2, $F94A

PRBL2 sends from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to
send. If X = $00, then PRBLANK will send 256 blanks.

PRBYTE, $FDDA

PRBYTE sends the contents of the accumulator in hexadecimal to
the current output device. The contents of the accumulator are
scrambled.

PRERR, $FF2D

PRERR sends the word ERR, followed by a bell character, to the
standard output device. On return, the accumulator is scrambled.

Monitor firmware support 67

PRHEX, $FDE3

PRHEX prints the lower nibble of the byte in the accumulator as a
single hexadecimal digit. On return, the contents of the
accumulator are scrambled.

PRNTAX, $F941

PRNTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed,
taband the X register contains the second. On return, the contents
of the accumulator are scrambled.

SCRN, $F871

SCRN returns the color value of a single block on the low-resolution
display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. The
block's color is returned in the accumulator. No other registers are
changed.

SETCOL, $F864

SETCOL sets the color used for plotting in low-resolution graphics
to the value passed in the acumulator. The colors and their values
are listed in Table 2-6.

VTABZ, $FC24

VfABZ sets the cursor vertical position. Unlike setting the position
at location $25, change of cursor position doesn't wait until a
carriage return character has been sent.

VLINE, $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on
the low-resolution display. Call VLINE with the horizontal
coordinate of the line in the Y register, the top vertical coordinate
in the accumulator, and the bottom vertical coordinate in
location $2D. VLINE returns with the accumulator scrambled

1/0 firmware support
Apple Ile video firmware conforms to the 1/0 firmware protocol of
Apple II Pascal 1.1. However, it does not support windows other
than the full 80-by-24 window in 80-column mode, and the full 40-
by-24 window in 40-column mode. The video protocol table is
shown in Table 3-9.

68 Chapter 3: Built-in 1/0 Firmware

Table 3-9
Slot 3 firmware protocol table

Address Value Description

$C30B $01
$C30C $88
$C30D $ii
$C30E $rr
$C30F $v.w
$C310 $ss
(PSTATUS).

Generic signature byte of firmware cards.
80-column card device signature.
$C3ii is entry point of initialization routine (PINI1).
$C3rr is entry point of read routine (PREAD).
$C3ww is entry point of write routine (PWRITE).
$C3ss is entry point of the status routine

PINIT, $C30D

PINIT does the following:

o sets a full 80-column window

o sets 80STORE ($C001)

o sets 80COL ($COOD)

o switches on AL TCHAR ($COOF)

o clears the screen; places cursor in upper-left corner

o displays the cursor

PREAD, $C30E

PREAD reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a zero in the
X register to indicate IORESULT = GOOD.

PWRITE, $C30F

PWRITE should be called after placing a character in the
accumulator with its high bit cleared. PWRITE does the following:

o It turns the cursor off.

o If the character in the accumulator is not a control character, it
turns the high bit on for normal display or off for inverse display,
displays it at the current cursor position, and advances the
cursor. If the character at the end of a line, PWRITE does carriage
return but not line feed. (See Table 3-10 for control character
functions.)

When PWRITE has completed this, it

o turns the cursor back on (if it was not intentionally turned off)

o puts a zero in the X register (IORESULT =GOOD) and returns to
the calling program

1/0 firmware support 69

Table 3-10
Pascal video control functions

Control- Hex Function performed

E ore $05 Turns cursor on (enables cursor display)

Forf $06 Turns cursor off (disables cursor display)

Gorg $07 Sounds bell (beeps)

H orh $08 Moves cursor left one column. If cursor was at
beginning of line, moves it to end of
preceding line

J or j $0A Moves cursor down one row; scrolls if needed

Kock $OB Clears to end of screen

L orl $0C Clears screen; moves cursor to upper-left of
screen

Morm $OD Moves cursor to column 0

Norn $OE Displays subsequent characters in normal
video (Characters already on display are
unaffected.)

0 oro $OF Displays subsequent characters in inverse
video (Characters already on display are
unaffected.)

Vorv $16 Scrolls screen up one line; dears bottom line

Worw $17 Scrolls screen down one line; clears top line

Yory $19 Moves cursor to upper-left (home) position
on screen

Z orz $1A Clears entire line that cursor is on

I or\ $1C Moves cursor right one column; if at end of
line, does Control-M

} or J $1D Clears to end of the line the cursor is on,
including current cursor position; does not
move cursor

I\ or 6 $1E GOTOxy: initiates a GOTOxy sequence;
interprets the next two characters as x+32 and
y+32, respectively

$1F If not at top of screen, moves cursor up one
line

70 Chapter 3: Built-In 1/0 Firmware

PSTATUS, $C310

A program that calls PSTATUS must first put a request code in the
accumulator: either a 0, meaning "Ready for output?" or a 1,
meaning "Is there any input?" PSTATUS returns with the reply in the
carry bit: 0 (No) or 1 (Yes).

PSTATUS returns with a 0 in the X register (IORESULT = GOOD),
unless the request was not 0 or 1; then PSTA TUS returns with a 3 in
the X register (IORESULT =ILLEGAL OPERATION).

1/0 firmware support 71

Chapter 4

Memory
Organization

73

For information about these
shared address spaces, see the
section "Bank-switched
Memory· In this chapter and the
sections ·other Uses of 1/0
Memory Space· and "Expansion
ROM Space· In Chapter 6.

For details of the built-In 1/0
feature. refer to the descriptions
in Chapters 2 and 3.

For Information about 1/0
operations with peripheral cards.
refer to Chapter 6.

The Apple He's microprocessor can address 65,536 (64K) locations
in memory. All of the Apple Ile's RAM, ROM, and 1/0 devices are
allocated locations in this 64K address range. Because each device
or function requires a certain block of memory, there are more
devices and functions than there are legal addresses, which means
that the legal addresses must be shared. This sharing is
accomplished through a technique called bank-switching, which is
explained under the "Bank-Switched Memory" and "Auxiliary
Memory and Firmware" sections in this chapter.

All input and output in the Apple Ile is memory mapped. This
means that all devices connected to the Apple Ile appear to be a set
of memory locations to the computer. In this chapter, the 1/0
memory spaces are described simply as blocks of memory.

Programmers often refer to the Apple Ile's memory in 256-byte
blocks called pages. One reason for this is that a one-byte address
counter or index register can specify one of 256 different locations.
Thus, page 0 consists of memory locations from 0 to 255
(hexadecimal $00 to $FF), inclusive; page 1 consists of locations
256 to 511 (hexadecimal $0100 to $01FF). Note that the page
number is the high-order part of the hexadecimal address. Don't
confuse this kind of page with the display buffers in the Apple Ile,
which are sometimes referred to as Page 1 and Page 2.

Main memory map
The map of the main memory address space in Figure 4-1 shows the
functions of the major areas of memory. For more details on the
1/0 space from 48K to 52K ($COOO through $CFFF), refer to
Chapter 2 and Chapter 6; the bank-switched memory in the
memory space from 52K to 64K ($DOOO through $FFFF) is described
in the section "Bank-Switched Memory" later in this chapter.

7 4 Chapter 4: Memory Organization

FFFF
Bank-

ROM Switched

RAM
DOOO
CFFF

1/0 cooo
BFFF

8000
7FFF

Main

RAM

4000
3FFF

0000

Figure 4-1
System memory map

Main memory map 75

RAM memory allocation
As Figure 4-1 shows, the largest portion of the Apple He's memory
space is allocated to programmable storage (RAM). Figure 4-2
shows the areas allocated to RAM. The main RAM memory extends
from location 0 to location 49151 (hex $BFFF), and occupies
pages 0 through 191 (hexadecimal $BF). There is also RAM storage
in the bank-switched space from 53248 to 65535 (hexadecimal
$DOOO to $FFFF), described in the section "Bank-Switched
Memory" later in this chapter, and auxiliary RAM, described in the
section •Auxiliary Memory and Firmware" later in this chapter.

BFFF

8000
7FFF

6000

5FFF

4000

3FFF

2000
lFFF

Page
2 l High-Resolution

Graphics
Display Buffers

Page 1

Page 2 } Text and Low-Resolution
Page 1 Graphics Display Buffers

~0000~----•••1111 ... i---- Reserved Pages

Figure 4-2
RAM allocation map

76 Chapter 4: Memory Organization

Reserved memory pages
Most of the Apple Ile's RAM is available for storing your programs
and data. However, a few RAM pages are reserved for the use of the
Monitor firmware and the BASIC interpreters. The reserved pages
are described in the following sections.

Important The system does not prevent your using these pages, but if you
do use them, you must be careful not to disturb the system
data they contain, or you will cause the system to malfunction.

Page zero

Several of the 65C02 microprocessor's addressing modes require
the use of addresses in page zero, also called zero page. The
Monitor, the BASIC interpreters, DOS 3.3, and ProDOS all make
extensive use of page zero.

To use indirect addressing in your assembly-language programs,
you must store base addresses in page zero. At the same time, you
must avoid interfering with the other programs that use page
zero-the Monitor, the BASIC interpreters, and the disk operating
systems. One way to avoid conflicts is to use only those page-zero
locations not already used by other programs. Tables 4-1 through
4-5 show the locations in page zero used by the Monitor, Applesoft
BASIC, Integer BASIC, DOS 3.3, and ProDOS.

As you can see from the tables, page zero is pretty well used up,
except for a few bytes here and there. It's hard to find more than
one or two bytes that aren't used by BASIC, ProDOS, the Monitor,
or DOS. Rather than trying to squeeze your data into an unused
corner, you may prefer a safer alternative: save the contents of part
of page zero, use that part, then restore the previous contents
before you pass control to another program.

RAM memory allocation 77

For more Information about links.
see the section "Changing the
Standard 1/0 Links" In
Chapter 6.

See Chapter 6 for Information
on the memory locations that
are reserved for peripheral cards.

lhe 65C02 stack

The 65C02 microprocessor uses page 1 as the stack-the place
where subroutine return addresses are stored-in last-in, first-out
sequence. Many programs also use the stack for temporary storage
of the registers (via push and pull operations). You can do the
same, but you should use it sparingly. The stack pointer is eight bits
long, so the stack can hold only 256 bytes of information at a time.
When you store the 257th byte in the stack, the stack pointer repeats
itself, or wraps around, so that the new byte replaces the first byte
stored, which is now lost. This writing over old data is called · stack
overflow, and when it happens, the program continues to run
normally until the lost information is needed, whereupon the
program terminates catastrophically.

The input buff er

The GETLN input routine, which is used by the Monitor and the
BASIC interpreters, uses page 2 as its keyboard-input buffer. The
size of this buffer sets the maximum size of input strings. (Applesoft
uses only the first 237 bytes, although it permits you to type in 256
characters.) If you know that you won't be typing any long input
strings, you can store temporary data at the upper end of page 2.

Link-address storage

The Monitor, ProDOS, and DOS 3.3 all use the upper part of page 3
for link addresses or vectors.

BASIC programs sometimes need short machine-language
routines. These routines are usually stored in the lower part of
page 3.

The display buffers

The primary text and low-resolution-graphics display buffer
occupies memory pages 4 through 7 Oocations 1024 through 2047,
hexadecimal $0400 through $07FF). This entire 1024-byte area is
called text Page 1, and it is not usable for program and data
storage. There are 64 locations in this area that are not displayed on
the screen; these locations are reserved for use by the peripheral
cards.

78 Chapter 4: Memory Organization

For more information about the
display buffers. see the section
·video Display Pages· in
Chapter 2.

Text Page 2, the alternate text and low-resolution-graphics display
buffer, occupies memory pages 8 through 11 (locations 2048
through 3071, hexadecimal $0800 through $OBFF). Most programs
do not use Page 2 for displays, so they can use this area for program
or data storage.

The primary high-resolution-graphics display buffer, called high
resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through $3FFF).
If your program doesn't use high-resolution graphics, this area is
usable for programs or data.

High-resolution Page 2 occupies memory pages 64 through 95
(locations 16384 through 24575, hexadecimal $4000 through
$5FFF). Most programs use this area for program or data storage.

The primary double high-resolution-graphics display buffer, called
double high-resolution Page 1, occupies memory pages 32 through
63 (locations 8192 through 16383, hexadecimal $2000 through
$3FFF) in both main and auxiliary memory. If your program
doesn't use high-resolution or double high-resolution graphics,
this area of main memory is usable for programs or data.

Table 4-1
Monitor zero-page use

Low nibble of address
High nibble
of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $0 $E $F

$00
$10 ••
$20 • • • • • • • • • • • • • • • •
$30 • • • • • • • • • • • • • • • •
$40 • • • • • • • • • • • •
$50 • • • • • •
$60
$70
$80
$90
$AO
$BO
$CO
$DO
$EO
$FO

• Byte used in original Apple Ile ROMs, now free

RAM memory allocation 79

80

Table 4-2
Applesoft zero-page use

Low nibble of address
High nibble
of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $8 $C $0 $E $F

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$AO
$BO
$CO
$DO
$EO
$FO

Table 4-3

• • • • • • • • • • • •
• • • • • • • • • • • • • •

• • • • •
• • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Integer BASIC zero-page use

Low nibble of address
High nibble
of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $8 $C $0 $E $F

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$AO
$BO
$CO
$DO
$EO
$FO

Chapter 4: Memory Organization

•

• • • •
• • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

• •

Table 4-4
DOS 3.3 zero-page use

Low nibble of address
High nibble
of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $8 $C $0 $E $F

$00
$10
$20
$30
$40
$50
$60
$70

J $80
$90
$AO
$BO
$CO
$DO
$EO
$FO

Table 4-5

•
• •

• • • • • • •

•

•

• • • • • •
• • • •
• • • • • •

• • • •

• • • •
•

ProDOS MU and disk-driver zero-page use

Low nibble of address

•
•

•

•

High nibble
of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $8 $C $0 $E $F

$00 • •
$10
$20
$30 • • • • • •
$40 • • • • • • • • • • • • • • •
$50
$60
$70
$80
$90
$AO
$BO
$CO
$DO
$EO
$FO

RAM memory allocation 81

Bank-switched memory
The memory address space from 52K to 64K (hexadecimal $DOOO
through $FFFF) is doubly allocated: it is used for both ROM and
RAM. The 12K bytes of ROM (read-only memory) in this address
space contain the Monitor and the Applesoft BASIC interpreter.
Alternatively, there are 16K bytes of RAM in this space. The RAM is
normally used for storing either the Integer BASIC interpreter or
part of the Pascal Operating System (purchased separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple Ile is able
to run software written for the Apple II and Apple II Plus because it
uses this part of memory in the same way they do. It's convenient to
have the Applesoft interpreter in ROM, but the Apple Ile, like an
Apple II with a language card, is also able to use that address space
for other things when Applesoft is not needed.

You may also be wondering how 16K bytes of RAM are mapped into
only 12K bytes of address space. The usual answer is that it's done
with mirrors, and that isn't a bad analogy: the 4K-byte address
space from 52K to S6K (hexadecimal $0000 through $DFFF) is used
twice.

Switching different blocks of memory into the same address space is
called bank swttchtng. There are actually two examples of bank
switching going on here: first, the entire address space from 52K to
64K ($0000 through $FFFF) is switched between ROM and RAM,
and second, the address space from 52K to S6K ($DOOO to $DFFF) is
switched between two different blocks of RAM.

FFFF

RAM

EOOO ROM

DFFF I RAM RAM
DOOO

Figure 4-3
Bank-switched memory map

82 Chapter 4: Memory Organization

Setting bank switches
You switch banks of memory in ,the same way you switch other
functions in the Apple Ile: by using soft switches. Read operations
to these soft switches do three things: select either RAM or ROM in
this memory space; enable or inhibit writing to the RAM; and select
the first or second 4K-byte bank of RAM in the address space $DOOO
to $DFFF.

Warning Do not use these switches without careful planning. Careless
switching between RAM and ROM Is almost certain to have
catastrophic effects on your program.

Table 4-6 shows the addresses of the soft switches for enabling all
combinations of reading and writing in this memory space. All of
the hexadecimal values of the addresses are of the form $C08x.
Notice that several addresses perform the same function: this is
because the functions are activated by single address bits. For
example, any address of the form $C08x with a 1 in the low-order
bit enables the RAM for writing. Similarly, bit 3 of the address
selects which 4K block of RAM to use for the address space $DOOO
$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3 is 1,
the second bank is used.

When RAM is not enabled for reading, the ROM in this address
space is enabled. Even when RAM is not enabled for reading, it can
still be written to if it is write-enabled.

When you turn power on or reset the Apple Ile, it initializes the bank
switches for reading the ROM and writing the RAM, using the
second bank of RAM. Note that this is different from the reset on the
Apple II Plus, which didn't affect the bank-switched memory (the
language card). On the Apple Ile, you can't use the reset vector to
return control to a program in bank-switched memory, as you could
on the Apple II Plus.

•!• Reset with Integer BASIC: When you are using Integer BASIC
on the Apple Ile, reset works correctly, restarting BASIC with
your program intact. This happens because the reset vector
transfers control to DOS, and DOS resets the switches for the
current version of BASIC.

Bank-switched memory 83

Table 4-6
Bank select switches

Name Action Hex Function

R $C080 Read RAM; no write; use
$DOOO bank 2.

RR $C081 Read ROM; write RAM; use
$DOOO bank 2.

R $C082 Read ROM; no write; use
$DOOO bank 2.

RR $C083 Read and write RAM; use
$DOOO bank 2.

R $C088 Read RAM; no write; use
$DOOO bank 1.

RR $C089 Read ROM; write RAM; use
$DOOO bank 1.

R $C08A Read ROM; no write; use
$DOOO bank 1.

RR $C08B Read and write RAM; use
$DOOO bank 1.

RDBNK2 R7 $C011 Read whether $DOOO
bank 2 (1) or bank 1 (O).

RD LC RAM R7 $C012 Reading RAM (1) or ROM (O).

ALTZP w $COOS Off: use main bank, page 0
and page 1.

ALTZP w $C009 On: use auxiliary bank, page 0
and page 1.

RDALTZP R7 $C016 Read whether auxiliary (1) or
main (O) bank.

Note: R means read the location, W means write anything to the location,
RIW means read or write, and R7 means read the location and then check
bit 7.

+Reading and writing to RAM banks: You can't read one RAM
bank and write to the other; if you select either RAM bank for
reading, you get that one for writing as well.

84 Chapter 4: Memory Organization

AD B3 CO
AD B3 CO
A9 DO
B5 01
A9 FF
B5 02
20 97 C9

AD BB CO
20 97 C9

AD B3 CO
A9 BO
E6 10
20 5B C9

AD BO CO
E6 10
A9 01
20 5B C9

AD BB CO
AD BB CO
E6 OE
E6 10
A9 OB
20 5B· C9

+Reading RAM and ROM: You can't read from ROM in part of
the bank-switched memory and read from RAM in the rest:
specifically, you can't read the Monitor in ROM while reading
bank-switched RAM. If you want to use the Monitor firmware
with a program in bank-switched RAM, copy the Monitor from
ROM Oocations $F800 through $FFCB) into bank-switched
RAM. You can't do this from Pascal or ProDOS.

To see how to use these switches, look at the following section of an
assembly-language program:

LDA $COB3
LDA $COB3
LDA #$DO
STA BEGIN
LDA #$FF
STA END
JSR RAMTST

LDA $COBB
JSR RAMTST

LDA $COBB
LDA #$BO
INC TSTNUM
JSR WPTSINIT

LDA $COBO
INC TSTNUM
LDA #PAT12K
JSR WPTSINIT

LDA $COBB
LDA $COBB
INC RWMODE
INC TSTNUM
LDA #PAT4K
JSR WPTSINIT

*SELECT 2ND 4K BANK & READ/WRITE
*BY TWO CONSECUTIVE READS
*SET UP .. .
* ... NEW .. .
* ... MAIN-MEMORY ...
* ... POINTERS ...
* ... FOR 12K BANK

*SELECT lST 4K BANK
*USE ABOVE POINTERS

*SELECT lST BANK & WRITE PROTECT

*SELECT 2ND BANK & WRITE PROTECT

*SELECT lST BANK & READ/WRITE
*BY TWO CONSECUTIVE READS
*FLAG RAM IN READ/WRITE

The LDA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches. The
unusual sequence of two consecutive IDA instructions performs the
two consecutive reads that write-enable this area of RAM; in this
case, the data that are read are not used.

Bank-switched memory 85

Reading bank switches

You can read which language card bank is currently switched in by
reading the soft switch at $C011. You can find out whether the
language card or ROM is switched in by reading $C012. The only
way that you can find out whether the language card RAM is write
enabled or not is by trying to write some data to the card's RAM
space.

Auxiliary memory and firmware
By installing an optional card in the auxiliary slot, you can add
more memory to the Apple Ile. One such card is the Apple Ile 80-
Column Text Card, which has lK bytes of additional RAM for
expanding the text display from 40 columns to 80 columns.

Another 80-column text card, the Apple Ile Extended 80-Column
Text Card, has 64K of additional RAM. A lK-byte area of this
memory serves the same purpose as the memory on the 80-Column
Text Card: expanding the text display to 80 columns. The other 63K
bytes can be used as auxiliary program and data storage. If you use
only 40-column displays, the entire 64K bytes is available for
programs and data. The Extended 80-Column Text Card is installed
in the extended keyboard Ile and shipped with later models of the
enhanced Ile.

Warning Do not attempt to use the auxiliary memory from a BASIC
program. The BASIC Interpreter uses several areas In main RAM.
Including the stack and the zero page. If you switch to
auxiliary memory In these areas. the BASIC Interpreter fails and
you must reset the system and start over.

As you can see by studying the memory map in Figure 4-4, the
auxiliary memory is broken into two large sections and one small
one. The largest section is switched into the memory address space
from 512 to 49151 ($0200 through $BFFF). This space includes the
display buffer pages: as described in the section "Text Modes" in
Chapter 2, space in auxiliary memory is used for one half of the 80-
column text display. You can ~itch to the auxiliary memory for this
entire memory space, or you can switch just the display pages: see
the next section, "Memory Mode Switching."

86 Chapter 4: Memory Organization

+ Soft switches: If the only reason you are using auxiliary memory
is for the 80-column display, note that you can store into the
display page in auxiliary memory by using the 80STORE and
PAGE2 soft switches described in the section "Display Mode
Switching" in Chapter 2.

The other large section of auxiliary memory is switched into the
memory address space from 52K to 64K ($DOOO through $FFFF).
This memory space and the switches that control it are described
earlier in this chapter in the section "Bank-Switched Memory." If
you use the auxiliary RAM in this space, the soft switches have the
same effect on the auxiliary RAM that they do on the main RAM: the
bank switching is independent of the auxiliary-RAM switching.

FFFF

0000
CFFF
cooo
BFFF

8000
7FFF

6000
5FFF

4000
3FFF

2000
lFFF

0000

ROM

Figure 4-4

1/0

High-Resolution

Main
Bank

___ ... Switched
RAM

Main
RAM

Graphics Display Buffers

Auxiliary
Bank

___ _. Switched
RAM

'-------' Auxiliary
RAM

Memory map with auxllliary memory

Auxiliary memory and firmware 87

<- Bank swttches: Note that the soft switches for the bank-switched
memory, described in the previous section, do not change
when you switch to auxiliary RAM. In particular, if ROM is
enabled in the bank-switched memory space before you switch
to auxiliary memory, the ROM will still be enabled after you
switch. Any time you switch the bank-switched section of
auxiliary memory in and out, you must also make sure that the
bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched space,
you also switch the first two pages, from 0 to 511 ($0000 through
$01FF). 'Ibis part of memory contains page zero, which is used for
important data and base addresses, and page one, which is the
65C02 stack. The stack and zero page are switched this way so that
system software running in the bank-switched memory space can
maintain its own stack and zero page while it manipulates the 48K
address space (from $0200 to $BFFF) in either main memory or
auxiliary memory.

Memory mode switching
J

Switching the 48K section of memory is performed by two soft
switches: the switch named RAMRD selects main or auxiliary
memory for reading, and the one named RAMWRT selects main or
auxiliary memory for writing. As shown in Table 4-7, each switch
has a pair of memory locations dedicated to it, one to select main
memory, and the other to select auxiliary memory. Enabling the
read and write functions independently makes it possible for a
program whose instructions are being fetched from one memory
space to store data into the other memory space.

Warning Do not use these switches without careful planning. Careless
switching between main and auxiliary memories Is almost
certain to have catastrophic effects on the operation of the
Apple lie. For example, If you switch to auxiliary memory with
no card In the slot. the program that Is running will stop and
you will have to reset the Apple lie and start over.

88 Chapter 4: Memory Organization

The next section. "Auxillary
Memory Subroutines: describes
firmware that you can call to
help you switch between main
and auxiliary memory.

Writing to the soft switch at location $C003 turns RAMRD on and
enables auxiliary memory for reading; writing to location $C002
turns RAMRD off and enables main memory for reading. Writing to
the soft switch at location $C005 turns RAMWRT on and enables the
auxiliary memory for writing; writing to location $C004 turns
RAMWRT off and enables main memory for writing. By setting
these switches independently, you can use any of the four
combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high
resolution graphics Page 1 can be used as part of the address space
from $0200 to $BFFF by using RAMRD and RAMWRT as described
above. These areas in auxiliary RAM can also be controlled
separately by using the switches described in the section "Display
Mode Switching" in Chapter 2. Those switches are named
80STORE, PAGE2, and HIRES.

As shown in Table 4-7, the 80STORE switch functions as an enabling
switch: with it on, the PAGE2 switch selects main memory or
auxiliary memory. With the HIRES switch off, the memory space
switched by PAGE2 is the text Page 1, from $0400 to $07FF; with
HIRES on, PAGE2 switches both text Page 1 and high-resolution
graphics Page 1, from $2000 to $3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control
switches take priority: if 80STORE is off, RAMRD and RAMWRT work
for the entire memory space from $0200 to $BFFF, but if 80STORE is
on, RAMRD and RAMWRT have no effect on the display page.
Specifically, if 80STORE is on and HIRES is off, PAGE2 controls text
Page 1 regardless of the settings of RAMRD and RAMWRT. Likewise,
if 80STORE and HIRES are both on, P AGE2 controls both text
Page 1 and high-resolution graphics Page 1, again regardless of
RAMRD and RAMWRT.

A single soft switch named ALTZP (for alternate zero page) switches
the bank-switched memory and the associated stack and zero page
area between main and auxiliary memory. As shown in Table 4-7,
writing to location $C009 turns AL TZP on and selects auxiliary
memory stack and zero page; writing to the soft switch at location
$COOS turns ALTZP off and selects main-memory stack and zero
page for both reading and writing.

Auxiliary memory and firmware 89

Table4-7
Auxiliary-memory select switches

Location

Name Function Hex Decimal Notes

RAM RD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 49154 -16382 Write
Read RAMRD switch $C013 49171 -16365 Read

RAMWRT Write auxiliary memory $C005 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -16354 Read

80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $COOO 49152 -16384 Write
Read 80STORE switch $C018 49176 -16360 Read

PAGE2 Page 2 on (aux. memory) $C055 49237 -16299
Page 2 off (main memory) $C054 49236 -16300 •
Read PAGE2 switch $C01C 49180 -16356 Read

HIRES On: access high-res pages $C057 49239 -16297 t
Off: use RAMRD, RAMWRT $C056 49238 -16298 t
Read HIRES switch $C01D 49181 -16355 Read

ALTZP Aux. stack & rero page $C009 49161 -16373 Write
Main stack & rero page $C008 4916o -16374 Write
Read ALTZP switch $C016 49174 -16352 Read

• When 80STORE is on, the P AGE2 switch selects main or auxiliary display memory.
t When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch between the high

resolution Page 1 area in main memory or auxiliary memory.

When these switches are on.
auxiliary memory Is being used;
when they are off. main
memory Is being used.

There are three more locations associated with the auxiliary
memory switches. The high-order bits of the bytes you read at these
locations tell you the settings of the three . soft switches described
above. The byte you read at location $C013 has its high bit set to 1 if
RAMRD is on (auxiliary memory is read-enabled), or 0 if RAMRD is
off (the 48K block of main memory is read-enabled). The byte at
location $C014 has its high bit set to 1 if RAMWRT is on (auxiliary
memory is write-enabled), or 0 if RAMWRT is off (the 48K block of
main memory is write-enabled). The byte at location $C016 has its
high bit set to 1 if ALTZP is on (the bank-switched area, stack, and
rero page in the auxiliary memory are selected), or 0 if ALTZP is off
(these areas in main memory are selected).

90 Chapter 4: Memory Organization

•:• Sharing memory: In order to have enough memory locations
for all of the soft switches and remain compatible with the
Apple II and Apple II Plus, the soft switches listed in Table 4-7
share their memory locations with the keyboard functions listed
in Table 2-1. The operations-read or write-shown in
Table 4-7 for controlling the auxiliary memory are just the ones
that are not used for reading the keyboard and clearing the
strobe.

Auxiliary-memory subroutines
If you want to write assembly-language programs that use auxiliary
memory but you don't want to manage the auxiliary memory
yourself, you can use the built-in auxiliary-memory subroutines.
These subroutines make it possible to use the auxiliary memory
without having to manipulate the soft switches described in the
previous section.

Important The subroutines described below make It easier to use auxiliary
memory. but they do not protect you from errors. You still have
to plan your use of auxiliary memory to avoid catastrophic
effects on your program.

You use these built-in subroutines the same way you use the 1/0
subroutines described in Chapter 3: by making subroutine calls to
their starting locations. Those locations are shown in Table 4-8.

Table4-8
48K RAM transfer routines

Name Action

AUXMOVE JSR

XFER]MP

Hex

$C311

$C314

Function

Moves data blocks between
main and auxiliary
48K memory

Transfers program control
between main and auxiliary
48K memory

Auxiliary memory and firmware 91

Moving data to auxiliary memory

In your assembly-language programs, you can use the built-in
subroutine named AUXMOVE to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set the carry bit to select
the direction of the move-main to auxiliary or auxiliary to main.

Warning Don't try to use AUXMOVE to copy data In page zero or page
one (the 65C02 stack) or In the bank-switched memory ($0000-
SFFFF). AUXMOVE uses page zero all during the copy, so It
can't handle moves In the memory space switched by ALTZP.

The pairs of bytes you use for passing addresses to this subroutine
are called Al, A2, and A4, and they are used for parameter passing
by several of the Apple He's built-in routines. The addresses of
these byte pairs are shown in Table 4-9.

Table 4-9
Parameters for AUXMOVE routine

Name

Carry

AlL
AlH
A2L
A2H
A4L
A4H

Location

$3C
$3D
$3E
$3F
$42
$43

Parameter passed

1 = Move from main to auxiliary memory
0 = Move from auxiliary to main memory
Source starting address, low-order byte
Source starting address, high-order byte
Source ending address, low-order byte
Source ending address, high-order byte
Destination starting address, low-order byte
Destination starting address, high-order byte

Note: The X, Y, and A registers are preserved by AUXM:OVE.

Put the addresses of the first and last bytes of the block of memory
you want to copy into Al and A2. Put the starting address of the
block of memory you want to copy the data to into A4.

The AUXMOVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit; to copy data from auxiliary memory to
main memory, clear the carry bit.

When you make the subroutine call to AUXMOVE, the subroutine
copies the block of data as specified by the A byte pairs and the
carry bit. When it is finished, the accumulator and the X and Y
registers are just as they were when you called AUXMOVE.

~2 Chapter 4: Memory Organization

Transferring control to auxiliary memory

You can use the built-in routine named XFER to transfer control to
and from program segments in auxiliary memory. You must set up
three parameters before using XFER: the address of the routine you
are transferring to, the direction of the transfer (main to auxiliary or
auxiliary to main), and which page zero and stack you want to use.

Table4-10
Parameters for XFER routine

Name
or location

Carry

Overflow

$03ED

$03EE

Parameter passed

1 -= Transfer from main to auxiliary memory
0 -= Transfer from auxiliary to main memory

1 -= Use page zero and stack in auxiliary memory
0 -= Use page zero and stack in main memory

Program starting address, low-order byte

Program starting address, high-order byte

Note: The X, Y, and A parameters are preserved by XFER.

Put the transfer address into the two bytes at locations $03ED and
$03EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer to
a program in auxiliary memory; clear the carry bit to transfer to a
program in main memory. Use the overflow bit to select which page
zero and stack you want to use: clear the overflow bit to use the main
memory; set the overflow bit to use the auxiliary memory.

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current stack,
then sets up the soft switches for the parameters you have selected
and jumps to the new program.

Warning It Is the programmer's responslblllty to save the current stack
pointer at $0100 In auxlllary memory and the alternate stack
pointer at $0101 In auxlllary memory before calling XFER and to
restore them after regaining control. Failure to do so will cause
program errors.

Auxiliary memory and firmware 93

For Information about the 1/0
links, see the section "Changing
the standard 1/0 Links" In
Chapter 6.

For more Information about
peripheral-card ROM, see the
section ·Peripheral-Card ROM
Space· In Chapter 6.

The reset routine
To put the Apple Ile into a known state when it has just been turned
on or after a program has malfunctioned, there is a procedure
called the reset routine. The reset routine is built into the Apple Ile's
firn.ware, and it is initiated any time you turn power on or press
Reset while holding down Control. The reset routine puts the
Apple Ile into its normal operating mode and restarts the resident
program.

When you initiate a reset, hardware in the Apple Ile sets the
memory-controlling soft switches to normal: main board RAM and
ROM are enabled, and, if there is an 80-column text card in the
auxiliary slot, expansion slot 3 is allocated to the built-in 80-
column firmware. Auxiliary RAM is disabled and the bank-switched
memory space is set up to read from ROM and write to RAM, using
the second bank at $DOOO.

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
window equal to the full 40-column display, puts the cursor at the
bottom of the screen, and sets the display format to normal.

The reset routine sets the keyboard and display as the standard input
and output devices by loading the standard 1/0 links. It turns
annunciators 0 and 1 off and annunciators 2 and 3 on, clears the
keyboard strobe, turns off any active peripheral-card ROM, and
outputs a bell (tone).

The Apple Ile has three types of reset: power-on reset, also called
cold-start reset; warm-start reset; and forced cold-start reset.
The procedure described above is the same for any type of reset.
What happens next depends on the reset vector. The reset routine
checks the reset vector to determine whether it is valid or not, as
described later in this chapter in the section "The Reset Vector." If
the reset was caused by turning the power on, the vector will not be
valid, and the reset routine will perform the cold-start procedure. If
the vector is valid, the routine will perform the warm-start
procedure.

94 Chapter 4: Memory Organization

For more Information about
ProDOS and the startup
procedure. see the ProDOS
Technical Reference Manual.

The cold-start procedure
If the reset vector is not valid, either the Apple Ile has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
"Apple I I e" ("Apple] [" on an original Ile) at the top of the
display. It loads the reset vector a,nd the validity-check byte as
described below, then starts checking the expansion slots to see if
there is a disk drive controller card in one of them, starting with
slot 7 and working down.

If the reset routine finds a controller card, it initiates the startup
(bootstrap) routine that resides in the controller card's firmware.
The startup mutine then loads DOS or ProDOS from the disk in
drive 1. When the operating system has been loaded, it displays
other messages on the screen. If there is no disk in the disk drive,
the drive motor just keeps spinning until you press Control-Reset.

If the reset routine doesn't find a controller card, or if you press
Control-Reset again before the startup procedure has been
completed, the reset routine will continue without using the disk,
and pass control to the built-in Applesoft interpreter.

The warm-start procedure
Whenever you press Control-Reset when the Apple Ile has already
completed a cold-start reset, the reset vector is still valid and it is
not necessary to reinitialize the entire system. The reset routine
simply uses the vector to transfer control to the resident program,
which is normally the built-in Applesoft interpreter. If the resident
program is indeed Applesoft, your Applesoft program and
variables are still intact. If you are using DOS, it is the resident
program and it restarts either Applesoft or Integer BASIC,
whichever you were using when you pressed Control-Reset.

Important A program In bank-switched RAM cannot use the reset vector
to regain control after a reset. because the Apple lie hardware
enables ROM In the bank-switched memory space. If you are
using Integer BASIC. which Is In the bank-switched RAM. you
are also using DOS. and It Is DOS that controls the reset vector
and restarts BASIC.

The reset routine 95

Forced cold start
If a program has loaded the re5et vector to point to the beginning of
the program, as described in the next section, pressing Control
ReSet causes a warm-start reset that uses the vector to transfer
control to that program. If you want to stop such a program without
turning the power off and on, you can force a cold-start reset by
holding down Open Apple and Control, then pressing and
releasing Reset.

•> Unconditional restart: When you want to stop a program
unconditionally-for example, to start up the Apple Ile with
some other program-you should use the forced cold-start
reset, Open Apple-Control-Reset, instead of turning the power
off and on.

Whenever you press Control-Reset, firmware in the Apple Ile always
checks to see whether either Apple key is down. If the Solid Apple
key (or Option key, in the extended keyboard Ile) is down, with or
without the Open Apple key, the firmware performs the self-test
described later in this chapter. If only the Open Apple key is down,
the firmware starts a forced cold-start reset. First, it destroys the
program or data in memory by writing two bytes of arbitrary data
into each page of main RAM. The two bytes that get written over in
page 3 are the ones that contain the reset vector. The reset routine
then performs a normal cold-start reset.

The reset vector
When you reset the Apple Ile, the reset routine transfers control to
the resident program by means of an address stored in page 3 of
main RAM. This address is called a vector because it directs
program control to a specified destination. There are several other
vector addresses stored in page 3, as shown in Table 4-11,
including the interrupt vectors described in the section "Interrupts
on the Enhanced Apple Ile" in Chapter 6, and the ProDOS and
DOS vectors described in the ProDOS Technical Reference
Manual and the Apple II DOS Programmer's Manual.

96 Chapter 4: Memory Organization

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector
address at locations 1010 and 1011 (hexadecimal $03F2 and $03F3).
It then stores a validity-check byte, also called the power-up byte, at
location 1012 (hexadecimal $03F4). The validity-check byte is
computed by performing an exclusive-OR of the second byte of the
vector with the constant 165 (hexadecimal $A5). Each time you
reset the Apple Ile, the reset routine uses this byte to determine
whether the reset vector is still valid.

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For
this to work, you must also change the validity-check byte to the
exclusive-OR of the high-order byte of your new reset vector with
the constant 165 ($A5). If you fail to do this, then the next time you
reset the Apple Ile the reset routine will determine that the reset
vector is invalid and perform a cold-start reset, eventually
transferring control to the disk startup routine or to Applesoft.

The reset routine has a subroutine that generates the validity-check
byte for the current reset vector. You can use this subroutine by
doing a subroutine call to location -1169 (hexadecimal $FB6F).
When your program finishes, it can return the Apple Ile to normal
operation by restoring the original reset vector and again calling
the subroutine to fix up the validity-check byte.

Table4-11
Page 3 vectors

Vector
address

$3F0$3Fl

$3F2$3F3

$3F4

$3F5$3F6$3F7

$3F8$3F9$3FA

$3FB$3FC$3FD

$3FE$3FF

Vector function

Address of the subroutine that handles BRK
requests (normally $59, $FA)

Reset vector (see text)

Power-up byte (see text)

Jump instruction to the subroutine that handles
Applesoft & commands (normally $4C, $58,
$FF)

Jump instruction to the subroutine that handles
user Control-Y commands

Jump instruction to the subroutine that handles
nonmaskable interrupts

Interrupt vector (address of the subroutine that
handles interrupt requests

The reset routine 97

Automatic self-test

If you reset the Apple Ile by holding down Solid Apple and Control
while pressing and releasing Reset; the reset routine will start
running the built-in self-test. Successfully running this test assures
you that the Apple Ile is operational.

Warning The self-test routine tests the Apple lle's programmable memory
by writing and then reading It. All programs and data in
programmable memory when you run the self-test are
destroyed.

The self-test takes several seconds to run. The screen will display
some patterns in low-resolution mode that will change rapidly just
before the self-test finishes. If the test finishes normally, the
Apple Ile displays System OK and waits for you to restart the
system.

If you have been running a program, some soft switches might be on
when you run the self-test. If this happens, the self-test will display a
message such as

IOU FLAG ES: 1

Turn the power off for several seconds, then turn it back on and
run the self-test again. If it still fails, there is really something
wrong; to get it corrected, contact your authorized Apple dealer for
service.

98 Chapter 4: Memory Organization

Chapter 5

Using the
Monitor

99

The starting addresses for all of
the standard subroutines are
listed in Appendix B.

The System Monitor is a set of subroutines in the Apple Ile
firmware. The Monitor provides a standard interface to the built-in
1/0 devices described in Chapter 2. The 1/0 subroutines described
in Chapter 3 are part of the System Monitor.

ProDOS, DOS 3.3, and the BASIC interpreters use these
subroutines by direct calls to their starting locations, as described
for the I/0 subroutines in Chapter 3.

If you wish, you can call the standard subroutines from your
programs in the same fashion.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor to

o look at one or more memory locations

o change the contents of any location

o write programs in machine language to be executed directly by
the Apple He's microprocessor

o save blocks of data and programs onto cassette tape and read
them back in again

o move and compare blocks of memory

o search for data bytes and ASCII characters in memory

o invoke other programs from the Monitor

o invoke the Mini-Assembler

Invoking the Monitor
The System Monitor starts at memory location $FF69 (decimal
65385 or -151). To invoke the Monitor, you make a CALL statement
to this location from the keyboard or from a BASIC program. When
the Monitor is running, its prompt character, an asterisk (*),
appears on the left side of the display screen, followed by a blinking
cursor.

To use the Monitor, you type commands at the keyboard. When you
have finished using the Monitor, you return to the BASIC language
you were previously using by pressing Control-Reset, by pressing
Control-C then Return, or by typing 3DOG (3D-zero-G), which
executes the resident program-usually Applesoft-whose address .
is stored in a jump instruction at location $3DO.

l 00 Chapter 5: Using the Monitor

See ·summary of Monitor
Commands" at the end of this
chapter.

Syntax of Monitor commands

To give a command to the Monitor, you type a line on the
keyboard, then press Return. The Monitor accepts the line using the
standard 1/0 subroutine GETLN, described in Chapter 3. A
Monitor command can be up to 255 character in length, ending
with a carriage return.

A Monitor command can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation. Hexadecimal
notation uses the ten decimal digits (0-9) and the first six letters
(A-F) to represent the sixteen values from 0 to 15. A pair of
hexadecimal digits represent values from 0 to 255, corresponding
to a byte; and a group of four hexadecimal digits can represent
values from 0 to 65,536, corresponding to a word. Any address in
the Apple Ile can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor
accepts any group of hexadecimal digits. If there are fewer than four
digits in the group, it adds leading zeros; if there are more than four
hexadecimal digits, the Monitor uses only the last four digits. It
follows a similar procedure when the command syntax calls for two-
digit data values. ·

Each command you type consists of one command character,
usually the first letter of the command name. When the command is
a letter, it can be either uppercase or lowercase. The Monitor
recognizes 23 different command characters. Some of them are
punctuation marks, some are letters, and some are control
characters.

•:• Note: Although the Monitor recognizes and interprets control
characters typed on an input line, they do not appear on the
screen.

This chapter contains many examples of the use of Monitor
commands. In tlie examples, the commands and values you type
are shown in a normal typeface and the responses of the Monitor
are in a computer typeface. Of course, when you perform the
examples, all of the characters that appear on the display screen
will be in the same typeface. Some of the data values displayed by
your Apple Ile may differ from the values printed in these
examples, because they are variables stored in programmable
memory.

Syntax of monitor commands l 01

Monitor memory commands
When you use the Monitor to examine and change the contents of
memory, it keeps track of the address of the last location whose
value you inquired about and the address of the location that is next
to have its value changed. These are called the last opened location
and the next changeable location.

Examining memory contents
When you type the address of a memory location and press Return,
the Monitor responds with the address you typed, a dash, a space,
and the value stored at that location, like this:

*EOOO

EOOO- 20

*33

0033- AA

*
Each time the Monitor displays the value stored at a location, it
saves the address of that location as the last opened location and as
the next changeable location.

Memory dump
When you type a period (.) followed by an address and then press
Return, the Monitor displays a memory dump: the data values
stored at all the memory locations from the one following the last
opened location to the location whose address you typed following
the period. The Monitor saves the last location displayed as both
the last opened location and the next changeable location. The
amount of data displayed by the Monitor depends on how much
larger than the last opened location the address after the period is;
here are some examples:

•20

0020- 00

*.2B

0021- 28 00 18 OF OC 00 00
0028- AB 06 DO 07

l 02 Chapter 5: Using the Monitor

*300

0300- 99

*.315

0301- B9 00 OB OA OA OA 99
030B- 00 OB CB DO F4 A6 2B A9

0310- 09 BS 27 AD CC 03

*.32A

0316- BS 41

031B- B4 40 BA 4A 4A 4A 4A 09

0320- co BS 3F A9 SD BS 3E 20

032B- 43 03 20

*

When the Monitor performs a memory dump, it starts at the
location immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including the
location whose address you typed, but only up to eight values on a
line. When it reaches a location whose address is a multiple of
eight-that is, one that ends with an 8 or a 0-it displays that
address as the beginning of a new line, then continues displaying
more values.

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory dump
and sets that location as both the last opened location and the next
changeable location. If the address specified on the input line is less
than the address of the last opened location, the Monitor displays
only the address and value of the location following the last opened
location.

You can combine the two commands, opening a location and
dumping memory, by simply concatenating them: type the first
address, a period, and the second address. This combination of
two addresses separated by a period is called a memory range.

*300.32F

0300- 99 B9 00 OB OA OA OA 99

030B- 00 OB CB DO F4 A6 2B A9
0310- 09 BS 27 AD cc 03 BS 41

031B- B4 40 BA 4A 4A 4A 4A 09

0320- co BS 3F A9 SD BS 3E 20
032B- 43 03 20 4 6 03 AS 3D 4D

Monitor memory commands l 03

*30.40

0030- AA 00 FF AA 05 C2 05 C2
0038- lB FD DO 03 3C 00 40 00

0040- 30

*E015.E025

E016- 4C ED FD

E018- A9 20 cs 24 BO OC A9 8D

E020 - AO 07 20 ED FD A9 *

Pressing Return by itself causes the Monitor to display one line of a
memory dump; that is, a memory dump from the location
following the last opened location to the next multiple-of-eight
boundary. The Monitor saves the address of the last location
displayed as the last opened location and the next changeable
location.

*5

0005- 00

*Return

00 00

*Return

0008- 00 00 00 00 00 00 00 00

*32

0032- FF

*Return

AA 00 C2 05 C2

*Return

0038- lB FD DO 03 3C 00 3F 00

*

l 04 Chapter 5: Using the Monitor

Changing memory contents
The preceding section showed you how to display the values stored
in the Apple Ile's memory; this section shows you how to change
those values. You can change any location in RAM
programmable memory-and you can also change the soft switches
and output devices by changing the locations assigned to them.

Warning Use these commands carefully. If you change the zero-page
locations used by Applesoft, ProDOS, or DOS, you may lose
programs or data stored In memory.

Changing one byte
The previous commands keep track of the next changeable
location; these commands make use of it. In the next example, you
open location 0, then type a colon (:) followed by a value:

*O

0000- 00

*:SF

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining that
location:

*O

0000- SF

*
You can also combine opening and changing into one operation by
typing an address followed by a colon and a value. In the example,
you type the address again to verify the change:

*302:42

*302

0302- 42

*
When you change the contents of a location, the value that was
contained in that location disappears, never to be seen again. The
new value will remain until you replace it with another value.

Changing memory contents 105

Changing consecutive locations
You don't have to type a separate command with an address, a
colon, a value, and Return for each location you want to change.
You can change the values of up to 85 consecutive locations at a
time (or even more, if you omit leading zeros from the values) by
typing only the initial address and colon followed by all the values
separated by spaces, and ending with Return. The Monitor will duly
store the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string
of values, it takes the location following the last changed location as
the next changeable location. Thus, you can continue changing
consecutive locations without typing an address on the next input
line by 'typing another colon and more values. In these examples,
you first change some locations, then examine them to verify the
changes:

*300:69 01 20 ED FD 4C 0 3

*300

0300- 69

*Return

01 20 ED FD 4C 00 03

*10:0 1 2 3

*:4 s 6 7

*10.17

0010- 00 01 02 03 04 05 06 07

*

ASCII input mode
The enhanced Apple Ile has an ASCII input mode that lets you enter
ASCII characters just as you can their hexadecimal ASCII
equivalents by preceding the literal character with an apostrophe
(').This means that 'A is the same as $Cl and 'Bis the same as $C2
to the Monitor. The ASCII value for any character following an
apostrophe is used by the Monitor.

l 06 Chapter 5: Using the Monitor

Each character to be placed in memory should be delimited by a
leading apostrophe (') and a trailing space. The only exception to
this rule is that the last character in the line is followed with a return
character instead of a space. The following example would enter the
string "Hooray for sushi!" at $0300 in memory.

*300:'H 'o 'o 'r 'a 'y ' 'f 'o 'r ' 's 'u 's 'h 'i '!

Important ASCII Input mode sets the high bit of the code for a character
that you enter. So 'A will equal $Cl. not $41.

Original lie The original Apple lie does not have an ASCII Input mode.

Moving data in memory
You can copy a block of data stored in a range of memory locations
from one area in memory to another by using the Monitor's MOVE
command. To move a range of memory, you must tell the Monitor
both where the data is now situated in memory (the source
locations) and where you want the copy to go (the destination
locations). You give this information to the Monitor by means of
three addresses: the address of the first location in the destination
and the addresses of the first and last locations in the source. You
specify the starting and ending addresses of the source range by
separating them with a period. You separate the destination address
from the range addresses with a less-than character (<), which you
may think of as an arrow pointing in the direction of the move.
Finally, you tell the Monitor that this is a MOVE command by
typing the letter M (in either lowercase or uppercase). The format
of the complete MOVE command looks like this:

{destination) < {start) . {ena} M

When you type the actual command, the words in braces should be
replaced by hexadecimal addresses, and the braces and spaces
should be omitted.

Here are some examples of Monitor commands, including some
memory moves. First, you examine the values stored in one range
of memory, then store several values in another range of memory;
the actual MOVE commands end with the letter M.

Changing memory contents l 07

See the section ·special Tricks
With the Monitor· later In this
chapter for an interesting
application of this feature.

* O.F

0000- SF 00 05 07 00 00 00 00

0008- 00 00 00 00 00 00 00 00

*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03

*300.30C

0300- A9 8D 20 ED FD A9 45 20

0308- DA FD 4C 00 03

*0<300.30CM

*O.C

0000- A9 8D 20 ED FD A9 45 20

0008- DA FD 4C 00 03

*310<8.AM

'*310.312

0310- DA FD 4C

*2<7.9M

*O.C

0000- A9 8D 20 DA FD A9 45 20

0008- DA FD 4C 00 03

*

The Monitor moves a copy of the data stored in the source range of
locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location. If
the second address in the source range specification is less than the
first, then only one value (that of the first location in the range) will
be moved.

If the destination address of the MOVE command is inside the
source range of addresses, then strange (and sometimes wonderful)
things happen: the locations between the beginning of the source
range and the destination address are treated as a subrange and the
values in this subrange are replicated throughout the source range.

l 08 Chapter 5: Using the Monitor

See the section "Special Tricks
With the Monitor· later In this
chapter.

Comparing data in memory
You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of memory
from one place to another. In fact, the VERIFY command can be
used immediately after a MOVE command to make sure that the
move was successful.

The VERIFY command, like the MOVE command, needs a range
and a destination. The syntax of the VERIFY command is

{destination} < {start} . {ena} V

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If any
values don't match, the Monitor displays the address at which the
discrepancy was found and the two values that differ. In the
example, you store data values in the range of locations from 0
to $0, copy them to locations starting at $300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value at
location 6 to $E4, it detects the change.

*O:D7 F2 E9 F4 F4 E5 EE AO E2 F9 AO C3 C4 C5

*300<0.DM

*300<0.DV

*6:E4

*300<0.DV

0006-E4 (EE)

*
If the VERIFY command finds a discrepancy, it displays the address
of the location in the source range whose value differs from its
counterpart in the destination range. If there is no discrepancy,
VERIFY displays nothing. The VERIFY command leaves the values
in both ranges unchanged. The last opened location is the last
location in the source range, and the next changeable location is
the first location in the source range, just as in the MOVE
command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges will be
compared. Like the MOVE command, the VERIFY command also
does unusual things if the destination address is within the source
range.

Changing memory contents l 09

Searching for bytes in memory
The SEARCH command lets you search for one or two bytes (either
hexadecimal values or ASCII characters) in a range of memory. You
must type in the ASCII string (or hexadecimal number or numbers)
in reverse of the order that they appear in memory. Think of the
SEARCH command as looking for items in a last-in, first-out queue.

The syntax of the SEARCH command is

{value or ASC/h<{start} .{end} S

If the byte (or two-byte sequence) that you specify is in the specified
memory range, the Monitor will return with a list of the addresses
where that byte (or byte sequence) occurs. If the byte (or byte
sequence) is not in the range, the Monitor just displays the prompt

The following example looks for the character string "LO" in
memory between $0300 and $03FF:

*'O'L<300.3FFS

•!• High bit set: Remember that ASCII input mode sets the high-
order bit of each character that you enter.

The next example searches for the two-byte sequence $FF11.

* 11FF<300.3FFS

You can't search for a two-byte sequence with a high byte of 0. The
Monitor ignores the high byte and searches for the low byte only.
The sequence DOFF is seen by the Monitor SEARCH command as FF.

Original lie The Monitor In the original Apple lie does not recognize the
SEARCH command.

Examining and changing registers
The microprocessor's register contents change continuously
whenever the Apple Ile is running any sort of program, such as the
Monitor. The Monitor lets you see what the register contents were
when you invoked the Monitor or a program that you were
debugging stopped at a break (BRK). The Monitor also lets you set
65C02 register values before you execute a program with the GO
command.

110 Chapter 5: Using the Monitor

When you call the Monitor, it stores the contents of the
microprocessor's registers in memory. The registers are stored in
the order A, X, Y, P (processor status register), and S (stack
pointer), starting at location $45 (decimal 69). When you give the
Monitor a GO command, the Monitor loads the registers from
these five locations before it executes the first instruction in your
program.

Pressing Control-E and then Return invokes the Monitor's
EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A register as the next
changeable location. After using the EXAMINE command, you can
change the values in these locations by typing a colon and then
typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

*Control-E

A=OA X=FF Y=DB P=BO S=FB

*:BO 02

*Control-E

A=BO X=02 Y=DB P=BO S=FB

*

Monitor cassette tape commands
The Apple Ile has two jacks for connecting an audio cassette tape
recorder. With a recorder connected, you can use the Monitor
commands described later in this section to save the contents of a
range of memory onto a standard cassette and recall it for later use.

Saving data on tape
The Monitor's WRITE command saves the contents of up to 65,536
memory locations on cassette tape. To save a range of memory on
tape, give the Monitor the starting and ending addresses of the
range, followed by the letter W(for WRITE), like this:

{star4 . {enc4 W

Monitor cassette tape commands 111

Don't press Return yet: first, put the tape recorder in record mode
and let the tape run for a second, then press Return. The Monitor
will write a ten-second tone onto the tape and then write the data.
The tone acts as a leader: later, when the Monitor reads the tape,
the leader enables the Monitor to get in step with the signal from the
tape. When the Monitor is finished writing the range you specified,
it will sound a bell (beep) and display a prompt. You should rewind
the tape and label it with the memory range that's on the tape and
what it's supposed to be.

Here's a small example you can save and use later to try out the
READ command. Remember that you must start the cassette
recorder in record mode before you press Return after typing the
WRITE command.

*O.FF FF AD 30 CO 88 DO 04 C6 01 PO 08 CA

DO F6 A6 00 4C 02 00 60

*0.14

0000- FF FF AD 30 CO 88 DO 04
0008- C6 01 FO 08 CA DO F6 A6

0010- 00 4C 02 00 60

*0.14W

*

It takes about 35 seconds total to save the values of 4096 memory
locations preceded by the ten-second leader onto tape. This works
out to an average data transfer rate of about 1350 bits per second.

The WRITE command writes one extra value on the tape after it ha~
written the values in the memory range. This extra value is the
checksum, which is the eight-bit partial sum of all values in the
range. When the Monitor reads the tape, it uses this value to
determine if the data has been written and read correctly. (See th(
next section.)

112 Chapter 5: Using the Monitor

Reading data from tQpe
Once you've saved a memory range onto tape with the Monitor's
WRITE command, you can read that memory range back into the
computer by using the Monitor's READ command. The data values
you've stored on the tape need not be read back into the same
memory range from whence they came; you can tell the Monitor to
put those values into any memory range in the computer's memory,
provided that it's the same size as the range you saved.

The format of the READ command is the same as that of the WRITE
command, except that the command letter is R·

{start} . {end} R

Once again, after typing the command, don't press Return.
Instead, start the tape recorder in play mode and wait a few
seconds. Although the WRITE command puts a ten-second leader
tone on the beginning of the tape, the READ command needs only
three seconds of this leader to lock on to the signal from the tape.
You should let a few seconds of tape go by before you press Return
to allow the tape recorder's output to settle down to a steady tone.

This example has two parts. First, you set a range of memory to
zero, verify the contents of memory, and then type the READ
command (but don't press Return).

*0:0

*0.14

0000- 00 00 00 00 00 00 00 00
0008- 00 00 00 00 00 00 00 00
0010- 00 00 00 00 00

0.14R

Now start the cassette running in play mode, wait a few seconds, and
press Return. After the Monitor sounds the bell (beep) and displays
the prompt, examine the range of memory to see that the values
from the tape were read correctly.

*0.14

0000- FF FF AD 30 CO 88 DO 04
0008- C6 01 FO 08 CA DO F6 A6
0010- 00 4C 02 00 60

*

Monitor cassette tape commands 113

After the Monitor has read all the data values on the tape, it reads
the checksum value. It computes the checksum on the data it read
and compares it to the checksum from the tape. If the two
checksums differ, the Monitor sends a beep to the speaker and
displays ERR. This warns you that there was a problem reading the
tape and that the values stored in memory aren't the values that were
recorded on the tape. If the two checksums match, the Monitor will
just send out a beep and display a prompt

Miscellaneous Monitor commands
These Monitor commands enable you to change the video display
format from normal to inverse and back, and to assign input and
output to accessories in expansion slots.

Inverse and normal display

You can control the setting of the inverse-normal mask location
used by the COUT subroutine (described in Chapter 3) from the
Monitor so that all of the Monitor's output will be in inverse format.
The INVERSE command, I, sets the mask such that all subsequent
inputs and outputs are displayed in inverse format. To switch the
Monitor's output back to normal format, use the NORMAL
command, N.

*O.F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

*I

*O.F

0000- OA OB oc OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

*N

*O.F

0000- OA OB oc OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6
*

114 Chapter 5: Using the Monitor

Back to BASIC

Use the BASIC command, Control-B, to leave the Monitor and
enter the BASIC that was active when you entered the Monitor.
Normally, this is Applesoft BASIC, unless you deliberately switched
to Integer BASIC. Any program or variables that you had previously
in BASIC will be lost If you want to reenter BASIC with your
previous program and variables intact, use the CONTINUE BASIC
command, Control-C.

If you are using DOS 3.3 or ProDOS, press Control-Reset or type
3DOG to return to the language you were using, with your program
and variables intact.

+ That's a number, not a letter: If you use 3DOG, make sure that
the third character you type is a zero, not a letter 0. The letter G
is the Monitor's GO command, described in the section
"Machine-Language Programs" later in this chapter.

Redirecting input and output

The PRINTER command, activated by Control-P, diverts all output
normally destined for the screen to an interface card in a specified
expansion slot, from 1 to 7. There must be an interface card in the
specified slot, or you will lose control of the computer and your
program and variables may be lost. The format of the command is

{slot numben Control-P

A PRINTER command to slot number 0 will switch the stream of
output characters back to the Apple Ile's video display.

Warning Don't give the PRINTER command with slot number 0 to
deactivate the 80-column firmware. even though you used this
command to activate It in slot 3. The command works. but It
just disconnects the firmware. leaving some of the soft switches
set for 80-column display.

In much the same way that the PRINTER command switches the
output stream, the KEYBOARD command substitutes the interface
card in a specified expansion slot for the Apple Ile's normal input
device, the keyboard. The format for the KEYBOARD command is

{slot numben Control-K

A slot number of 0 for the KEYBOARD command directs the
Monitor to accept input from the Apple He's built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents
of the BASIC commands PR# and IN#.

Miscellaneous Monitor commands 115

Hexadecimal arithmetic
The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats:

{value} + {value} {value} - {value}

The Apple Ile performs the arithmetic and displays the result, as
shown in these examples:

*20+13

=33

*4A-C

=3E

*FF+4

03

*3-4

=FF

*

Special tricks with the Monitor
This section describes some more complex ways of using the
Monitor commands.

Multiple commands
You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces and the total number
of characters in the line is less than 254. Adjacent single-letter
commands such as L, S, I, and N need not be separated by spaces.

You can freely intermix all the commands except the STORE (:)
command. Since the Monitor takes all values following a colon and
places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases; it usually has no effect and
can be used anywhere.

116 Chapter 5: Using the Monitor

In the following example, you display a range of memory, change
it, and display it again, all with one line of commands:

*300.307 300: 18 69 1 N 300.302

0300- 00 00 00 00 00 00 00 00
0300- 18 69 01

*
If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to that
character, then grinds to a halt with a noisy beep and ignores the
remainder of the input line.

Filling memory

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in
the first locations in the range.

*300:11 22 33

Remember the number of values in the pattern: in this case, it is
three. Use the number to compute addresses for the MOVE
command, like this:

{stdrt+numbe1} < {start} . {end-numben M

This MOVE command will first replicate the pattern at the locations
immediately following the original pattern, then replicate that
pattern following itself, and so on until it fills the entire range.

* 303<300.32DM

*300.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11
0310- 22 33 11 22 33 11 22 33
0318- 11 22 33 11 22 33 11 22
0320- 33 11 22 33 11 22 33 11
0328- 22 33 11 22 33 11 22 33

*

Special tricks with the Monitor 117

You can do a similar trick with the VERIFY command to check
whether a pattern repeats itself through memory. This is especially
useful to verify that a given range of memory locations all contain
the same value. In this example, you first fill the memory range
from $0300 to $0320 with zeros and verify it, then change one
location and verify again, to see the VERIFY command detect the
discrepancy:

*300:0

*301 <300.31FM

*301 <300.3 lFV

*304:02

*301<300.31FV

0303-00 (02) 0304-02 (00)

*

Repeating commands
You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of the
command line that you want to repeat with a letter command, such
as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating; for the first character
in the line, n=O. The value for n must be followed with a space in
order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200.
Each time the Monitor executes a command, it stores the value of
the index at location $34; when that command is finished, the
Monitor reloads the index register with the value at location $34. By
making the last command change the value at location $34, you
change this index so that the Monitor picks up the next command
character from an earlier point in the buffer.

118 Chapter 5: Using the Monitor

The only way to stop a loop like this is to press Control-Reset; that is
how this example ends.

*N 300 302 34:0

0300- 11
0302- 33
0300- 11
0302- 33
0300- 11

0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
030
*

Creating your own commands
The USER command, Control-Y, forces the Monitor to jump to
memory location $03F8. You can put a JMP instruction there that
jumps to your own machine-language program. Your program can
then examine the Monitor's registers and pointers or the input
buffer itself to obtain its data. For example, here is a program that
display~ everything on the input line after the Control-Y. The
program starts at location $0300; the command line that starts with
$03F8 stores a jump to $0300 at location $03F8.

*300:A4 34 B9 00 02 20 ED FD CS C9 SD DO FS 4C 69 FF

*37S :4C 00 03

*Control-Y THIS IS A TEST

THIS IS A TEST

*

Special tricks with the Monitor 119

Machine-language programs
The main reason to program in machine language is to get more
speed. A program in machine language can run much faster than
the same program written in high-level languages such as BASIC or
Pascal, but the machine-language version usually takes a lot longer
to write. There are other reasons to use machine language: you
might want your program to do something that isn't included in
your high-level language, or you might just enjoy the challenge of
using machine language to work directly on the bits and bytes.

•:• Boning up on machine language: If you have never used
machine language before, you'll need to learn the 65C02
instructions listed in Appendix A. To become proficient at
programming in machine language, you'll have to spend some
time at it and study at least one of the books on 6502
programming listed in the bibliography. With the books and
Appendix A, you'll have the needed information to program
the 65C02.

You can get a hexadecimal dump of your program, move it around
in memory, or save it on tape and recall it using the commands
described in the previous sections. The Monitor commands in this
section are intended specifically for you to use in creating, writing,
and debugging machine-language programs.

Running a program
The Monitor command you use to start execution of your machine
language program is the GO command. When you type an address
and the letter G, the Apple Ile starts executing machine language
instructions starting at the specified location. If you just type G,
execution starts at the last opened location. The Monitor treats this
program as a subroutine: it should end with an RTS (return from
subroutine) instruction to transfer control back to the Monitor.

120 Chapter 5: Using the Monitor

The word mnemonic comes from
the same root as memory and
refers to short acronyms that
are easier to remember than the
hexadecimal operation codes
themselves: for example. for
clear carry you write CLC
instead of $18.

The Monitor has some special features that make it easier for you to
write and debug machine-language programs, but before you get
into that, here is a small machine-language program that you can
run using only the simple Monitor commands already described.
The program in the example merely displays the letters A
through Z: you store it starting at location $0300, examine it to be
sure you typed it correctly, then type 3 O OG to start it running.

*300:A9 Cl 20 ED FD 18 69 1 C9 DB DO F6 60

*300.30C

0300- A9 Cl 20 ED FD 18 69 01
0308- C9 DB DO F6 60

*300GABCDEFGHIJKLMNOPQRSTUVWXYZ

*

Disassembled programs
Machine-language code in hexadecimal isn't the easiest thing in the
world to read and understand. To make this job a little easier,
machine-language programs are usually written in assembly
language and converted into machine-language code by programs
called assemblers.

Since programs that translate assembly language into machine
language are called assemblers, a program like the Monitor's LIST
command that translates machine language into assembly language
is called a disassembler.

The Monitor's LIST command displays machine-language code in
assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command.displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

Machine-language programs 121

The Monitor LIST command has the format

{location) L

The LIST command starts at the specified location and displays as
much memory as it takes to make up a screenful (20 lines) of
instructions, as shown in the following example:

*300L

0300- A9 Cl LOA t$Cl
0302- 20 ED FD JSR $FDED
0306- 18 CLC
0306- 69 01 ADC t$01
0308- C9 DB CMP t$DB

030A- DO F6 BNE $0302

030C- 60 RTS
030D- 00 BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0316- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK

*

The first seven lines of this example are the assembly-language form
of the program you typed in the previous example. The rest of the
lines are BRK instructions only if this part of memory has zeros in it:
other values will be disassembled as other instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the program
counter, which it uses only to point to locations within programs.
Whenever the Monitor performs a LIST command, it sets the
program counter to point to the location immediately following the
last location displayed on the screen, so that if you type another
LIST command it will display another screenful of instructions,
starting where the previous display left off.

122 Chapter 5: Using the Monitor

The Mini-Assembler
Without an assembler, you have to write your machine-language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered
in the previous sections. That is exactly what you did when you ran
the previous examples.

The Monitor includes an assembler called the Mini-Assembler that
lets you enter machine-language programs directly from the
keyboard of your Apple. ASCII characters can be entered in Mini
Assembler programs, exactly as you enter them in the Monitor.
Note that the Mini-Assembler doesn't accept labels; you must use
actual values and addresses.

Starting the Mini-Assembler
To start the Mini-Assembler first invoke the Monitor by typing
CALL -151 and pressing Return, and then from the Monitor, type
! followed by Return. The Monitor prompt character then changes
from* to ! .

When you finish using the Mini-Assembler, press Return from a
blank line to return to the Monitor.

Restrictions
The Mini-Assembler supports only the subset of 65C02 instructions
that are found on the 6502.

Original lie Before you can use the Mini-Assembler on the original Apple lie,
you have to be running Integer BASIC. When you start up the
computer using DOS or either BASIC, the Apple lie loads the
Integer BASIC Interpreter from the file named INTBASIC Into the
bank-switched RAM. Here's how to start the Mini-Assembler on
an original Apple lie:

1. Start Integer BASIC from DOS 3.3 by typing INT and pressing
Return.

2. After the Integer prompt character(>) and a cursor appear,
enter the Monitor by typing CALL -151 and pressing Return.

3. Now start the Mini-Assembler by typing F 6 6 6G and pressing
Return.

The Mini-Assembler 123

Formats for operands are listed
in Table 5-1.

Using the Mini-Assembler
The Mini-Assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini
Assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction.
Now press Return. The Mini-Assembler converts the line you typed
into hexadecimal, stores it in memory beginning at the location of
the program counter, and then disassembles it again and displays
the disassembled line. It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first, don't type an address or a colon: just type a space
and the next instruction's mnemonic and operand, then press
Return. The Mini-Assembler assembles that line and waits for
another.

! 300:LDX #02

0300- A2 02 LDX #$02

! LDA $0,X

0302- BS 00 LDA $00,X

! STA $10,X

0304 95 10 STA $10,X

! DEX

0306- CA DEX

! STA $C030

0307- SD 30 co STA $C030

! BPL $302

030A- 10 F6 BPL $0302

! BRK

030C- 00 BRK

124 Chapter 5: Using the Monitor

If the line you type has an error in it, the Mini-Assembler beeps
loudly and displays a caret (") under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing
parentheses, and so forth. The Mini-Assembler also rejects the
input line if you forget the space before or after a mnemonic or
include an extraneous character in a hexadecimal value or address.
If the destination address of a branch instruction is out of the range
of the branch (more than 127 locations distant from the address of
the instruction), the Mini-Assembler flags this as an error.

There are several different ways to leave the Mini-Assembler and
reenter the Monitor. On an enhanced Apple Ile only, simply press
Return at a blank line.

Original lie On an original Apple lie, type the Monitor command $FF69G.

On any Apple Ile, you can press Control-Reset, which forces a
warm restart of BASIC, then type CALL -151.

Your assembly-language program is now stored in memory. You
can display it with the LIST command:

•3001

0300- A2 02 LDX #$02
0302- BS 00 LDA $00,X
0304- 95 10 STA $10,X
0306- CA DEX
0307- SD 30 co STA $C030
030A- 10 F6 BPL $0302
030C- 00 BRK
030D- 00 BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0316- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK

*

The Mini-Assembler 125

See Appendix A for more
Information about 65C02 (and
6502) instructions.

Table 5-1
Mini-Assembler address formats

Addressing mode Format

Accumulator

Implied

Immediate #${value}

Absolute ${address}

Zero page ${address}

Indexed zero ${address} ,X
page ${address},Y

Indexed ${address},X
absolute ${address}, Y

Relative ${address}
Indexed (${address},X)
indirect

Indirect (${address}),Y
indexed

Absolute (${address})
indirect

• These instructions have no
operands.

Mini-Assembler instruction formats
The Apple Mini-Assembler recognizes 56 mnemonics and 13
addressing formats. These constitute the 6502 subset of the 65C02
instruction set. The mnemonics are standard, as used in the
Synertek Programmtng Manual (Apple part number A2L0003),
but the addressing formats are somewhat different. Table 5-1 shows
the Apple standard address-mode formats for 6502 assembly
language.

An address consists of one or more hexadecimal digits. The Mini
Assembler interprets addresses the same way the Monitor does: if
an address has fewer than four digits, the Mini-Assembler adds
leading zeros; if the address has more than four digits, then it uses
only the last four.

<• Dollar signs: In this manual, dollar signs ($) in addresses signify
that the addresses are in hexadecimal notation. They are
ignored by the Mini-Assembler and may be omitted when
typing programs.

There is no syntactical distinction between the absolute and zero
page addressing modes. If you give an instruction to the Mini
Assembler that can be used in both absolute and zero-page mode,
the Mini-Assembler assembles that instruction in absolute mode if
the operand for that instruction is greater than $FF, and it
assembles it in zero-page mode if the operand is less than $0100.

Instructions in accumulator mode and implied addressing mode
need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-Assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-Assembler sounds a bell
(beep), displays a caret(") under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, the Mini-Assembler will
not accept the line.

126 Chapter 5: Using the Monitor

Summary of Monitor commands
Here is a summary of the Monitor commands, showing the syntax
for each one.

Examining memory
{ad rs}

{ad rs J}.{adrs2}

Return

Examines the value contained in one
location.

Displays the values contained in all
locations between {adtSl} and {adtS2.

Displays the values in up to eight locations
following the last opened location.

Changing the contents of memory
{adrs} :{val} {val}

:{val}{vall .. .

Stores the values in consecutive memory
locations starting at {adtS}.

Stores values in memory starting at the next
changeable location.

Moving and comparing
{dest}<{start}.{end}M Copies the values in the range

{start}.{end} into the range beginning at
{dest}.

{dest}<{start}.{end}V Compares the values in the range
{start}.{end} to those in the range
beginning at {dest}.

The Examine command
Control-E Displays the locations where the contents

of the 65C02's registers are stored and
opens them for changing.

Summary of Monitor commands 127

The Search command
{val}<{start}.{end}S Displays the address of the first

occurrence of {va4 in the specified range
beginning at {start}.

Cassette tape commands
{start}.{end}W

{start}. {end}R

Writes the values in the memory range
{start}.{enal onto tape, preceded by a
ten-second leader.

Reads values from tape, storing them
in memory beginning at {start} and
stopping at {end. Prints ERR if an error
occurs.

Miscellaneous Monitor commands

N

Control-B

Control-C

{val}+{val}

{val}-{ val}

{slot} Control-P

Control-Y

128 Chapter 5: Using the Monitor

Sets inverse display mode.

Sets norrrial display mode.

Enters the language currently active
(usually Applesoft) .

Returns to the language currently active
(usually Applesoft) .

Adds the two values and prints the
hexadecimal result.

Subtracts the second value from the first
and prints the result.

Diverts output to the device whose
interface card is in slot number {slot}. If
{slot}=O, accepts input from the
keyboard.

Jumps to the machine-language
subroutine at location $3F8.

Running and listing programs
{adrs}G

{adrs}L

Transfers control to the machine language
program beginning at {adrs}.

Disassembles and displays 20
instructions, starting at {adt:S}.

Subsequent LIST commands display 20
more instructions.

The Mini-Assembler

Original lie The Mini-Assembler Is available on an original Apple lie only
when Integer BASIC Is active. See the earlier section ·rhe Mini-
Assembler.· ·

F666G

${command}

$FF69g

Return

Invokes the Mini-Assembler on the
original Apple Ile.

Invokes the Mini-Assembler on the
enhanced Apple Ile.

Executes a Monitor command from the
Mini-Assembler on the original
Apple Ile.

Leaves the Mini-Assembler on the
original Apple Ile.

Leaves the Mini-Assembler on the
enhanced Apple Ile.

Summary of Monitor commands 129

Chapter 6

Programming for
Peripheral Cards

131

The seven expansion slots on the Apple He's main circuit board are
used for installing circuit cards containing the hardware and
firmware needed to interface peripheral devices to the Apple Ile.
These slots are not simple I/0 ports; peripheral cards can access
the Apple He's data, address, and control lines via these slots. The
expansion slots are numbered from 1 to 7, and certain signals,
described below, are used to select a specific slot.

Apple II and II Plus The Apple II and Apple II Plus have an eighth expansion slot:
slot number 0. On those models, slot 0 is normally used for a
language card or a ROM card; the functions of the Apple II
Language Card are built into. the main circuit board of the
Apple lie.

Interrupt support on the enhanced Apple Ile requires that special
attention be paid to cards designed to be in slot 3. A description of
what you need to watch for is given at the end of this chapter.

Original lie The Interrupt support built Into the enhanced (and extended
keyboard) Apple lie Is an enhanced and expanded version of
the interrupt support In the original Apple lie.

Peripheral-card memory spaces
Because the Apple He's microprocessor does all of its 1/0 through
memory locations, portions of the Apple He's memory space have
been allocated for the exclusive use of the cards in the expansion
slots. In addition to the memory locations used for actual 1/0 , there
are memory spaces available for programmable memory (RAM) in
the main memory and for read-only memory (ROM or PROM) on
the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as 1/0 drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intelligent peripherals. They make it possible for you to add
peripheral hardware to your Apple Ile without having to change
your programs, provided that your programs follow normal
practice for data input and output.

132 Chapter 6: Programming for Peripheral Cards

Table 6-1
Peripheral-card 1/0
memory locations
enabled by DEVICE
SELECT'

Slot Locations

1 $C090-$C09F
2 $COAO-$COAF
3 $COBO-$COBF
4 $COCO- $COCF
5 $CODO-$CODF
6 $COEO-$COEF
7 $COFO-$COFF

Signals for which the active
state Is low are marked with a
prime(').

Table 6-2
Peripheral-card ROM
memory locations
enabled by 1/0 SELECT'

Slot Locations

1 $ClOO-$ClFF
2 $C200-$C2FF
3 $C300-$C3FF
4 $C400-$C4FF
5 $C500-$C5FF
6 $C600-$C6FF
7 $C700-$C7FF

See the section "1/0
Programming Suggestions· later
in this chapter.

Peripheral-card 1/0 space
Each expansion slot has the exclusive use of 16 memory locations
for data input and output in the memory space beginning at
location $C090. Slot 1 uses locations $C090 through $C09F, slot 2
uses locations $COAO through $COAF, and so on through location
$COFF, as shown in Table 6-1 .

These memory locations are used for different 1/0 functions,
depending on the design of each peripheral card. Whenever the
Apple Ile addresses one of the 16 1/0 locations allocated to a
particular slot, the signal on pin 41 of that slot, named DEVICE
SELECT', switches to the active Oow) state. This signal can be used
to enable logic on the peripheral card that uses the 4 low-order
address lines to determine which of its 16 I/0 locations is being
accessed.

Peripheral-card ROM space
One 256-byte page of memory space is allocated to each acc;essory
card. This space is normally used for read-only memory (ROM or
PROM) on the card with driver programs that control the operation
of the peripheral device connected to the card.

The page of memory allocated to each expansion slot begins at
location $Cn00, where n is the slot number, as shown in Table 6-2
and Figure 6-3. Whenever the Apple Ile addresses one of the 256
ROM memory locations allocated to a particular slot, the signal on
pin 1 of that slot, named 1/0 SELECT', switches to the active Oow)
state. This signal enables the ROM or PROM devices on the card,
and the eight low-order address lines determine which of the 256
memory locations is being accessed.

Expansion ROM space
In addition to the small areas of ROM memory allocated to each
expansion slot, peripheral cards can use the 2K-byte memory space
from $C800 to $CFFF for larger programs in ROM or PROM. This
memory space is called expansion ROM space. (See the memory
map in Figure 6-3.) Besides being larger, the expansion ROM
memory space is always at the same locations regardless of which
slot is occupied by the card, making programs that occupy this
memory space easier to write.

Peripheral-card memory spaces 133

This memory space is available to any peripheral card that needs it.
More than one peripheral card can have expansion ROM on it, but
only one of them can be active at a time.

Each peripheral card that uses expansion ROM must have a circuit
on it to enable the ROM. The circuit does this by a two-stage
process: first, it sets a flip-flop when the I/0 SELECT' signal, pin 1
on the slot, becomes active Oow); second, it enables the expansion
ROM devices when the 1/0 STROBE' signal, pin 20 on the slot,
becomes active Oow). Figure 6-1 shows a typical ROM-enable
circuit.

The 1/0 SELECT' signal on a particular slot becomes active
whenever the Apple He's microprocessor addresses a location in
the 256-byte ROM address space allocated to that slot. The I/0
STROBE' signal on all of the expansion slots becomes active Oow)
when the microprocessor addresses a location in the expansion
ROM memory space, $C800-$CFFF. The 1/0 STROBE' signal is
used to enable the expansion-ROM devices on a peripheral card.
(See Figure 6-1.)

Important If there Is an .80-column text card Installed In the auxiliary slot,
some of the functions normally associated with slot 3 are
performed by the 80-column text card and the built-In 80-
column firmware. With the 80-column text card Installed. the
1/0 STROBE' signal Is not avallable on slot 3. so firmware In
expansion ROM on a card In slot 3 will not run.

1/0 SELECT' s ENABLE 1
Latch

$CFFF' R 2K Byte
ENABLE 2

1/0 STROBE' ROM

Address AO to AlO

Figure 6-1
Expansion ROM enable circuit

134 Chapter 6: Programming for Peripheral Cards

A program on a peripheral card can get exclusive use of the
expansion ROM memory space by referring to location $CFFF in its
initialization phase. This location is special: all peripheral cards
that use expansion ROM must recognize a reference to $CFFF as a
signal to reset their ROM-enable flip-flops and disable their
expansion ROMs. Of course, doing so also disables the expansion
ROM on the card that is about to use it, but the next instruction in
the initialization code sets the flip-flop in the expansion-ROM
enable circuit on the card.

A card that needs to use the expansion ROM space must first insert
its slot address ($Cn) in $07F8 before it refers to $CFFF. This allows
interrupting devices to reenable the card's expansion ROM after
interrupt handling is finished. Once its slot address has been
inserted in $07F8, the peripheral card has exclusive use of the
expansion memory space and its program can jump directly into
the expansion ROM.

As described earlier, the expansion-ROM disable circuit resets the
enable flip-flop whenever the 6SC02 addresses location $CFFF. To
do this, the peripheral card must detect the presence of $CFFF on
the address bus. You can use the 1/0 STROBE' signal for part of the
address decoding, since it is active for addresses from $C800
through $CFFF. If you can afford to sacrifice some ROM space, you
can simplify the address decoding even further and save circuitry
on the card. For example, if you give up the last 256 bytes of
expansion ROM space, your disable circuit only needs to detect
addresses of the form $CFxx, and you can use the minimal disable
decoding circuitry shown in Figure 6-2.

AS

A9

AlO

1/0 STROBE'

Figure 6-2

To RESET, ROM Enable
Flip-Flop

ROM disable address decoding

Important Applesoft addresses two locations in the SCFxx space. thereby
resetting the enable flip-flop. If your peripheral device Is going
to be used with Applesoft programs. you must either use the full
address decoding or else enable the expansion ROM each time
It Is needed.

Peripheral-card memory spaces 135

Peripheral-card RAM space

There are 56 bytes of main memory allocated to the peripheral
cards, eight bytes per card, as shown in Table 6-3. These 56
locations are actually in the RAM memory reserved for the text and
low-resolution graphics displays, but these particular locations are
not displayed on the screen and their contents are not changed by
the built-in output routine COUTl. Programs in ROM on peripheral
cards use these locations for temporary data storage.

Table 6-3
Peripheral-card RAM memory locations

Slot number
Base
address 2 3• 4 5 6 7

$0478 $0479 $047A $047B• $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB• $04FC $04FD $04FE $04FF
$0578 $0579 $057A $057B 0 $057C $057D $057E $057F
$05F8 $05F9 $05FA $05FW $05FC $05FD $05FE $05FF
$0678 $0679 $067A $067B• $067C $067D $067E $067F
$06F8 $06F9 $06FA $06FB• $06FC $06FD $06FE $06FF
$0778 $0779 $077A $077B• $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB• $07FC $07FD $07FE $07FF

• If there is a card in the auxiliary slot, it takes over these locations.

A program on a peripheral card can use the eight base addresses
shown in the table to access the eight RAM locations allocated for its
use, as shown in the next section, "I/O Programming Suggestions."

Warning The Apple lie firmware sets the value of $04FB to $FF on a reset,
even If there Is no 80-column card Installed.

1/0 programming suggestions
A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump to an
absolute location in one of the 256-byte memory spaces, then the
card will work only when it is plugged into the slot that uses that
memory space. If you are writing the program for a peripheral card
that will be used by many people, you should avoid placing such a
restriction on the use of the card.

136 Chapter 6: Programming for Peripheral Cards

Important To function properly no matter which slot a peripheral card is
Installed In, the program In the card's 256-byte memory space
must not make any absolute references to itself. Instead of
using jump Instructions. you should force conditions on branch
Instructions, which use relative addressing.

The first thing a peripheral card used as an 1/0 device must do when
called is to save the contents of the Apple He's microprocessor's
registers. (Peripheral cards not being used as 1/0 devices do not
need to save the registers.) The device should save the register's
contents on the stack, and restore them just before returning
control to the calling program. If there is RAM on the peripheral
card, the information may be stored there.

Most single-character 1/0 is done via the microprocessor's
accumulator. A character being output through your subroutine will
be in the accumulator with its high bit set when your subroutine is
called. Likewise, if your subroutine is performing character input, it
must leave the character in the accumulator with its high bit set when
it returns to the calling program.

Finding the slot number with ROM switched in

The memory addresses used by a program on a peripheral card
differ depending on which expansion slot the card is installed in.
Before it can refer to any of those addresses, the program must
somehow determine the correct slot number. One way to do this is
to execute a JSR (jump to subroutine) to a location with an RTS
(return from subroutine) instruction in it, and then derive the slot
number from the return address saved on the stack, as shown in the
following example.

PHP
SEI
JSR KNOWNRTS

TSX
LDA $0100,X
AND i$0F
PLP

save status
inhibit interrupts
->a known RTS instruction

; ... that you set up
get high byte of the
... return address fr om stack
low-order digit is slot no.
restore status

The slot number can now be used in addressing the memory
allocated to the peripheral card, as shown in the next section.

1/0 programming suggestions 137

See the section ·setting Bank
switches· In Chapter 4 for more
Information.

1/0 addressing
Once your peripheral-card program has the slot number, the card
can use the number to address the 1/0 locations allocated to the
slot. Table 6-4 shows how these locations are related to 16 base
addresses starting with $C080. Notice that the difference between
the base address and the desired 1/0 location has the form $no,
where n is the slot number. Starting with the slot number in the
accumulator, the following example computes this difference by
four left shifts, then loads it into an index register and uses the base
address to specify one of 16 1/0 locations.

ASL
ASL
ASL
ASL
TAX
LDA $C080,X

get n into

•.. high-order nybble
... of index register

load from f i rst I/O l ocation

•:• Selecting your target: You must make sure that you get an
appropriate value into the index register when you address 1/0
locations this way. For example, starting with 1 in the
accumulator, the instructions in the above example perform an
LDA from location $C090, the first 1/0 location allocated to
slot 1. If the value in the accumulator had been 0, the LDA
would have accessed location $C080, thereby setting the soft
switch that selects the second bank of RAM at location $DOOO
and enables it for reading.

Table 6-4
Peripheral-card 1/0 base addresses

Connector number
Base
address 2 3 4 5 6 7

$C080 $C090 $COAO $COBO $COCO $CODO $COEO $COFO
$C081 $C091 $COA1 $COB1 $COC1 $CODI $COE1 $COF1
$C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2
$C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3
$C084 $C094 $COA4 $COB4 $COC4 $COD4 $COE4 $COF4
$C085 $C095 $COA5 $COB5 $COC5 $COD5 $COE5 $COF5
$C086 $C096 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6
$C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7
$C088 $C098 $COA8 $COB8 $COC8 $COD8 $COE8 $COF8 .
$C089 $C099 $COA9 $COB9 $COC9 $COD9 $COE9 $COF9

138 Chapter 6: Programming for Peripheral Cards

Table 6-4 (continued)
Peripheral-card 1/0 base addresses

Base
address 2

Connector number

3 4 5 6 7

$C08A $C09A $COAA $COBA $COCA $CODA $COEA $COFA
$COBB $C09B $COAB $COBB $COCB $CODB $COEB $COFB
$C08C $C09C $COAC $COBC $COCC $CODC $COEC $COFC
$C08D $C09D $COAD $COBO $COCO $CODD $COED $COFD
$COSE $C09E $COAE $COBE $COCE $CODE $COEE $COFE
$C08F $C09F $COAF $COBF $COCF $CODF $COEF $COFF

RAM addressing
A program on a peripheral card can use the eight base addresses
shown in Table 6-3 to access the eight RAM locations allocated for
its use. The program does this by putting its slot number into the Y
index register and using indexed addressing mode with the base
addresses. The base addresses can be defined as constants because
they are the same no matter which slot the peripheral card
occupies.

If you start with the correct slot number in the accumulator (by using
the example shown earlier), then the following example uses all
eight RAM locations allocated to the slot:

TAY
LDA $0478,Y
STA $04F8,Y

LDA $0578,Y
STA $05F8,Y
LDA $0678, y

STA $06F8,Y
LDA $0778,Y
STA $07F8,Y

Warning You must be very careful when you have your peripheral-card
program store data at the base-address locations themselves
since they are temporary storage locations; the RAM at those
locations Is used by the disk operating system. Always store the
first byte of the ROM location of the expansion slot that Is
currently active ($Cn) In location $7F8, and the first byte of the
ROM location of the slot holding the controller card for the
startup disk drive In location $5F8.

1/0 programming suggestions 139

See "The Standard 1/0 Links" In
Chapter 3.

COUTl and BASICOUT are
described in Chapter 3.

KEVIN and BASICIN are described
In Chapter 3.

Changing the standard 1/0 links

There are two pairs of locations in the Apple Ile that are used for
controlling character input and output. They are called the VO
links. In an Apple Ile running without a disk operating system, the
VO links normally contain the starting addresses of the standard
input and output routines-KEYIN and COUTl if the 80-column
firmware is not active, BASICIN and BASICOUT if the 80-column is
active. If a disk operating system is running, one or both of the links
will hold the addresses of the operating system input and output
routines.

The link at locations $36 and $37 (decimal 54 and 55) is called CSW,
for character output switch. Individually, location $36 is called
CSWL (CSW Low) and location $37 is called CSWH (CSW High).
CSW holds the starting address of the subroutine the Apple Ile is
currently using for single-character output. This address is normally
$FDFO, the address of routine COUTl, or $C307, the address of
BASICO UT.

When you issue a PR#n from BASIC or an n Control-P from the
Monitor, the Apple Ile changes this link address to the first address
in the ROM memory space allocated to slot number n. That address
has the form $Cn00. Subsequent calls for character output are thus
transferred to the program on the peripheral card. That program
can use the instruction sequences given above to find its slot
number and use the 1/0 and RAM locations allocated to it. When it
is finished, the program can execute an RTS (return from
subroutine) instruction to return control to the calling program, or
jump to the output routine COUTl at location $FDFO to display the
output character (which must be in the accumulator) on the screen,
then let COUTl return to the calling program.

A similar link at locations $38 and $39 (decimal 56 and 57) is called
KSW, for keyboard tnput switch. Individually, location $38 is
called KSWL (KSW low) and location $39 is called KSWH (KSW
high). KSW holds the starting address of the routine currently being
used for single-character input. This address is normally $FD1B,
the starting address of KEYIN, or $C305, the address of BASICIN.

140 Chapter 6: Programming for Peripheral Cards

Important

See the ProDOS Technical
Reference Manual for more
about using link addresses.

Refer to the section on Input and
output link registers In the DOS
Programmer's Manual and the
ProDOS Technical Reference
Manual tor further details.

When you issue an IN#n command from BASIC or an n Control-K
from the Monitor, the Apple Ile changes this link address to $Cn00,
the beginning of the ROM memory space that is allocated to slot
number n. Subsequent calls for character input are thus transferred
to the program on the accessory card. That program can use the
instruction sequences given above to find its slot number and use
the 1/0 and RAM locations allocated to it. The program should put
the input character, with its high bit set, into the accumulator and
execute an RTS instruction to return control to the program that
requested input.

When a disk operating system (ProDOS or DOS 3.3) is running, one
or both of the standard 1/0 links hold addresses of the operating
system's input and output routines. The operating system has
internal locations that hold the addresses of the character input and
output routines that are currently active.

If a program that Is running with ProDOS or DOS 3.3 changes
the standard link addresses, either directly or via IN# and PR#
commands, the operating system Is disconnected.

To avoid disconnecting the operating system each time a BASIC
program initiates 1/0 to a slot, it should use either an IN# or a PR#
command from inside a PRINT statement that starts with a
Control-D character. For assembly-language programs, there is a
DOS 3.3 subroutine call to use when changing the link addresses.
After changing CSW or KSW, the program calls this subroutine at
location $03EA (decimal 1002). The subroutine transfers the link
address to a location inside the operating system and then restores
the operating system address in the standard link location.

Other uses of 1/0 memory space
The portion of memory space from location $COOO through $CFFF
(decimal 49152 through 53247) is normally allocated to 1/0 and
program memory on the peripheral cards, but there are two other
functions that also use this memory space: the built-in self-test
firmware and the 8C>-column display firmware. The soft switches that
control the allocation of this memory space are described in the
next section.

Other uses of 1/0 memory space 141

CFFF

Internal
Peripheral

ROM and
Expansion

ROM
Peripheral

Expansion ROM

Slot 7 ROM

Slot 6 ROM

Slot 5 ROM

Slot 4 ROM

Slot 3 ROM Internal ROM

Slot 2 ROM

Slot 1 ROM

C800

C700

C600

C500

C400

C300

C200

ClOO

cooo
Internal Soft Switches and Peripheral l/O

Figure 6-3
1/0 memory map

Switching 1/0 memory

Internal

ROM

The built-in firmware uses two soft switches to control the allocation
of the 1/0 memory space from $COOO to $CFFF. The locations of
these soft switches, SLOTCXROM and SLOTC3ROM, are given in
Table 6-5.

•:• Note: Like the display switches described in Chapter 2, these
soft switches share their locations with the keyboard data and
strobe functions. The switches are activated only by writing,
and the states can be determined only by reading, as indicated
in Table 6-5.

142 Chapter 6: Programming for Peripheral Cards

Table 6-5
1/0 memory switches

Name

SLOTC3ROM

SLOTCXROM

Location

Function Hex Decimal Notes

Slot ROM at $C300 $COOB 49163 -16373 Write
Internal ROM at $C300 $COOA 49162 -16374 Write
Read SLOTC3ROM switch $C017 49175 -16361 Read

Slot ROM at $Cx00 $C006 49159 -16377 Write
Internal ROM at $Cx00 $C007 49158 -16378 Write
Read SLOTCXROM switch $C015 49173 -16363 Read

When SLOTC3ROM is on, the 256-byte ROM area at $C300 is
available to a peripheral card in slot 3, which is the slot normally
used for a terminal interface. If a card is installed in the auxiliary
slot when you turn on the power or reset the Apple Ile, the
SLOT3ROM switch is turned off. Turning SLOTC3ROM off disables
peripheral-card ROM in slot 3 and enables the built-in 80-column
firmware, as shown in Figure 6-3. The 80-column firmware is
assigned to slot-3 address space because slot 3 is normally used with
a terminal interface, so the built-in firmware will work with
programs that use slot 3 this way.

The bus and 1/0 signals are always available to a peripheral card in
slot 3, even when the 80-column hardware and firmware are
operating. Thus it is always possible to use this slot for any 1/0
peripheral that does not have built-in firmware.

When SLOTCXROM is active (high), the I/0 memory space from
$Cl00 to $C7FF is allocated to the expansion slots, as described
previously. Setting SLOTCXROM inactive Oow) disables the
peripheral-card ROM and selects built-in ROM in all of the I/0
memory space except the part from $COOO to $COFF (used for soft
switches and data 1/0), as shown in Figure 6-3. In addition to the
80-column firmware at $C300 and $C800, the built-in ROM includes
firmware that performs the self-test of the Apple Ile's hardware.

•:• Note: Setting SLOTCXROM low enables built-in ROM in all of
the 1/0 memory space (except the soft-switch area), including
the $C300 space, which contains the 80-column firmware.

Other uses of 1/0 memory space 143

Developing cards for slot 3

Original lie In the original Apple lie firmware, the Internal slot 3 firmware was
always switched In If there was an 80-column card (either 1 K

For more information about the
SC300 firmware . see the
Monitor ROM listing In
Appendix J of this manual.
Especially note the portion from
SC300 through SC420.

or 641<) in the auxiliary slot. This means that peripheral cards
with their own ROM were effectively switched out of slot 3
when the system was turned on.

With the enhanced Apple Ile Monitor ROM, the rules are different.
A peripheral card in slot 3 is now switched in when the system is
started up or when Reset is pressed if the card's ROM has the
following ID bytes:

$C305 = $38
$C307 • $18

The enhanced Apple Ile firmware requires that interrupt code be
present in the $C3 page (either external or internal). A peripheral
card in slot 3 must have the following code to support interrupts.
After this segment, the code continues execution in the internal
ROM at $C400.

$C3F4:IRQDONE STA $C081 ;Read ROM, writ e RAM
JMP $FC7A ; Jump to $F8 ROM
IRQ

BIT $C015 ;slot or internal ROM
STA $C007 ;force in internal ROM

When programming for cards in slot 3:

o You must support the AUXMOVE and XFER routines at $C311
and $C314.

o Don't use unpublished entry points into the internal $Cn00
firmware, because there is no guarantee that they will stay the
same.

o If your peripheral card is a character I/O device, you must follow
the Pascal 1.1 firmware protocol, described in the next section.

144 Chapter 6: Programming for Peripheral Cards

Table 6-6
Peripheral-card device-class
assignments

Digit Device class

$0 Reserved
$1 Printer
$2 Joystick or other X-Y

input device
$3 Serial or parallel I/0

card
$4 Modem
$5 Sound or speech device
$6 Clock
$7 Mass storage device
$8 80-column card
$9 Network or bus interface
$A Special purpose (none

of the above)
$B-F Reserved for future

expansion

Pascal 1.1 firmware protocol
The Pascal 1.1 firmware protocol was originally developed to be
used with Apple Pascal 1.1 programs. The protocol is followed by
all succeeding versions of Apple II Pascal, and can be used by
programmers using other languages as well.

The Pascal 1.1 firmware protocol provides Apple Ile programmers
with

o a standard way to uniquely identify new peripheral cards

o a standard way to address the firmware routines in peripheral
cards

Device identification

The Pascal 1.1 firmware protocol uses four bytes near the beginning
of the peripheral card's firmware to identify the peripheral card.

Address

$Cs05
$Cs07
$CsOB
$CsOC

Value

$38 Oike the old Apple II Serial Interface Card)
$18 Oike the old Apple II Serial Interface Card)
$01 (the generic signature of new cards)
$ci (the device signature)

The first hexadecimal digit, c, of the device signature byte identifies
the device class; and the second hexadecimal digit, i, of the device
signature byte is a unique identifier for the card, used by some
manufacturers for their cards. Table 6-6 shows the device-class
assignments.

For example, the Apple II Super Serial Card has a device signature
of $31: the 3 signifies that it is a serial or parallel 1/0 card, and the 1
is the low-order digit supplied by Apple Technical Support.

Although version 1.1 of Pascal ignores the device signature,
applications programs can use them to identify specific devices.

1/0 routine entry points

Indirect calls to the firmware in a peripheral card are done through
a branch table in the card's firmware. The branch table of 1/0
routine entry points is located near the beginning of the CsOO
address space (s being the slot number where the peripheral card is
installed).

Pascal 1.1 firmware protocol 145

The branch table locations that Pascal 1.1 firmware protocol uses
are as follows:

Contains

Initialization routine offset (required)
Read routine offset (required)
Write routine offset (required)
Status routine offset (required)

Address

$CsOD
$CsOE
$CsOF
$Cs10
$Csll
$Cs12
$Cs13

$00 if optional offsets follow; nonzero if not
Control routine offset (optional)
Interrupt handling routine offset (optional)

Notice that $Csll contains $00 only if the control and interrupt
handling routines are supported by the firmware. (For example, the
SSC does not support these two routines, and so location $Csl 1
contains a nonzero firmware instruction.) Apple II Pascal 1.0 and
1.1 do not support control and interrupt requests, but such requests
are implemented in Pascal 1.2 and later versions and in ProDOS.

Table 6-7 gives the entry point addresses and the contents of the
65C02 registers on entry to and on exit from Pascal 1.1 1/0
routines.

Table 6-7
1/0 routine offsets and registers under Pascal 1.1 protocol

Address Offset for X register Y register A register

$Cs0D Initialization
On entry $Cs $s0
On exit Error code (unchanged) (unchanged)

$CsOE Read
On entry $Cs $s0
On exit Error code (unchanged) Character read

$CsOF Write
On entry $Cs $s0 Char. to write
On exit Error code (unchanged) (unchanged)

$Cs10 Status
On entry $Cs $s0 Request (0 or 1)
On exit Error code (changed) (unchanged)

146 Chapter 6: Programming for Peripheral Cards

For more about Interrupt support
In ProDOS, see the ProDOS
Technical Reference Manual.

For Information about Interrupt
handling with Apple Pascal 1.2.
see the Device and /nfeffupt
SUpport Tools Manual, which is
part of the Apple II Device
Support Tools package
(A2W0014).

Interrupts on the enhanced Apple lie
The original Apple Ile offered little firmware support for interrupts.
The enhanced Apple Ile's firmware provides improved interrupt
support, very much like the Apple Ilc's interrupt support. Neither
machine disables interrupts for extended periods.

Interrupts work on enhanced Apple Ile systems with an installed 80-
column text card (either lK or 64K) or a peripheral card with
interrupt-handling ROM in slot 3. Interrupts are easiest to use with
ProDOS and Pascal 1.2 because they have interrupt support built
in. DOS 3.3 has no built-in interrupt support.

The new interrupt handler operates like the Apple Ile interrupt
handler, using the same memory locations and operating
protocols. The main purpose of the interrupt handler is to support
interrupts in any memory configuration. This is done by saving the
machine's state at the time of the interrupt, placing the Apple in a
standard memory configuration before calling your program's
interrupt handler, then restoring the original state when your
program's interrupt handler is finished.

What Is an interrupt?
An interrupt is a hardware signal that tells the computer to stop
what it is currently doing and devote its attention to a more
important task. Print spooling and mouse handling are examples of
interrupt use, things that don't take up all the time available to the
system, but that should be taken care of promptly to be most useful.

For example, the Apple Ile mouse can send an interrupt to the
computer every time it moves. If you handle that interrupt
promptly, the mouse pointer's movement on the screen will be
smooth instead of jerky and uneven.

Interrupt priority is handled by a daisy-chain arrangement using
two pins, INT IN and INT OUT, on each peripheral-card slot. As
described in Chapter 7, each peripheral card breaks the chain when
it makes an interrupt request. On peripheral cards that don't use
interrupts, these pins should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: if this
card opens the connection between INT IN and INT OUT, or if there
is no card in this slot, interrupt requests from cards in slots 1
through 6 can't get through. Similarly, slot 6 controls interrupt
requests (IRQ) from slots 1 through 5, and so on down the line.

Interrupts on the enhanced Apple lie 147

When the IRQ' line on the Apple Ile's microprocessor is activated
(pulled low), the microprocessor transfers control through the
vector in locations $FFFE-$FFFF. This vector is the address of the
Monitor's interrupt handler, which determines whether the request
is due to an external IRQ or a BRK instruction and transfers control
to the appropriate routine via the vectors stored in memory page 3.
The BRK vector is in locations $03F~$03Fl and ProDOS uses the
IRQ vector in locations $03FE-$03FF. (See Table 4-11.) The
Monitor normally stores the address of its reset routine in the IRQ
vector; you should substitute the address of your program's
interrupt-handling routine.

Apple Pascal doesn't use the BRK vector at $03F0-$03Fl, but it does
use the IRQ vector at $03FE-$03FF.

Interrupts on Apple lie series computers
The interrupt handler built into the enhanced Apple He's firmware
saves the contents of the accumulator on the stack. ('Ibe original
Apple Ile saves the contents of the accumulator at location $45.)
DOS 3.3, as well as the Monitor, rely on the integrity of location
$45, so this change lets both DOS 3.3 and the Monitor continue to
work with active interrupts on the enhanced Apple Ile.

Original lie Since the built-In Interrupt handler on the original Apple lie uses
location $45 to save the contents of the accumulator. the
operating system fails when an Interrupt occurs under DOS 3.3
on the original Apple lie.

If you want to write programs that use interrupts while running on the
original Apple Ile, Apple II Plus, or Apple II, you must use either
ProDOS or Apple II Pascal 1.2 (or later versions). Both these
operating systems give you full interrupt support, even though these
versions of the Apple II don't include interrupt support in their
firmware. (Versions of Pascal before 1.2 do not work with interrupts
enabled on an original Apple Ile.)

Some other manufacturer's hardware, such as coprocessor cards,
don't work properly in an interrupting environment. If you are
trying to develop an application and encounter this problem, check
with the manufacturer of the card to see if a later version of the
hardware or its software will operate properly with interrupts active.
You may not be able to use interrupts if an interrupt-tolerant
version isn't available.

148 Chapter 6: Programming for Peripheral Cards

Interrupts are effective only if they are enabled most of the time.
Interrupts that occur while interrupts are disabled will not be
serviced.

Pascal, DOS 3.3, and ProDOS tum off interrupts while performing
disk operations because of the critical timing of disk read and write
operations. Some peripheral cards used in the Apple Ile disable
interrupts while reading and writing.

Original lie Although the enhanced Apple lie firmware never disables
Interrupts during screen handling, the original Apple lie
perlodically turns Interrupts off while doing 80-column screen
operations. The effect Is most noticeable while the screen is
scrolling.

Important Don't use PR#6 to restart your Apple lie while running ProDOS
with Interrupts enabled since PR#6 doesn't disable Interrupts. If
you try It, ProDOS will fall as It starts up since Its Interrupt
handlers aren't yet set up. If you have to restart, use Control
Reset or make sure that your program disables Interrupts before
It ends.

Rules of the interrupt handler
Unlike the Apple Ile, the enhanced Apple Ile's interrupt-handling
firmware is not always switched in. Here are the reasons why this is
so and the implications that necessarily follow.

There is no part of memory in the Apple Ile that is always switched
in. Thus, there is no location for an interrupt handler that works for
all memory configurations. However, the $C3 page of firmware is
present on all systems that have 80-column text cards in their
auxiliary slots, so it was selected as the starting location of the built
in interrupt-handling routine.

There are two factors that determine if the $C3 firmware is switched
in and therefore whether or not interrupts will be usable:

o Is there an 80-column text card in the auxiliary slot?

o If not, is there a peripheral card in slot 3 with built-in ROM with
bytes $C305 = $38 and $C307 = $18?

Interrupts on the enhanced Apple lie 149

Important

See the section ·Developing
Cards for Slot 3· earlier In this
chapter.

The Apple He's memory is switched according to the following rules
at both poweru p and reset:

o If there is a ROM card in slot 3, but no text card in the auxiliary
slot, the firmware on the ROM card is switched in. This is
necessary for Pascal to work.

o If there is a text card in the auxiliary slot, but no ROM card in
slot 3, the internal $C3 firmware is switched in.

o If there is both a text card in the auxiliary slot and a ROM card in
slot 3, the firmware on the ROM card is switched in.

These rules mean that systems without 80-column text cards in
the auxiliary slot do not have their Internal SC3 firmware
switched In. Such systems cannot handle Interrupts or breaks
(the software equivalent of Interrupts). An application program
must swap In the SC3 firmware both on Initialization and after
reset to make Interrupts function properly on such a machine
configuration. (ProDOS versions 1.1 and later do this for you
during startup.)

Another implication of the decision to have interrupt code in the
$C3 page affects the shared $C800 space in the Apple Ile. When the
$C3 page is referenced, the Ile hardware automatically switches in
its own $C800 space. When the interrupt handler finishes, it
restores the $C800 space to the original owner using
MSLOT ($07F8). This means that it is very important for a
peripheral card to place its slot address in MSLOT to support
interrupts while code is being executed in its $C800 space.

Interrupt handling on the 65C02 and 6502

There are three possible conditions that will allow interrupts on the
6SC02 and 6502:

o The IRQ line on the microprocessor is pulled low after a CLI
instruction has been used (interrupts are not masked). This is the
standard technique that devices use when they need immediate
attention.

o The microprocessor executes a break instruction (BRK =

opcode $00).

o A nonmaskable interrupt (NMI) occurs. The microprocessor
services this interrupt whether or not the CLI instruction has been
used. An NMI is completely independent of the interrupts
discussed in this manual.

150 Chapter 6: Programming for Peripheral Cards

Interrupt-handler Installation Is
described in the ProDOS
Technical Reference Manual and
the Device and lnte"upt support
Tools Manual, which Is part of
the Apple II Device Support Tools
package (A2W0014).

The microprocessor saves the current program counter and status
byte on the stack when an interrupt occurs and then jumps to the
routine whose address is stored in $FFFE and $FFFF. The sequence
of operations performed by the microprocessor is as follows:

1. It finishes executing the current instruction if an IRQ is
encountered. (If a BRK instruction is encountered, the current
instruction is already finished.)

2. It pushes the high byte of the program counter onto the stack.

3. It pushes the low byte of the program counter onto the stack.

4. It pushes the processor status byte onto the stack.

5. It executes a JMP ($FFFE) instruction.

The interrupt vector at $FFFE

Three separate regions of memory contain address $FFFE in an
Apple Ile with an Extended 80-Column Text Card: the built-in
ROM, the bank-switched memory in main RAM, and the bank
switched memory in auxiliary RAM. The vector at $FFFE in the ROM
points to the built-in interrupt handling routine. You must copy the
ROM's interrupt vector to the other banks yourself if you plan to use
interrupts with the bank-switched memory switched in.

The built-in interrupt handler

The enhanced Apple Ile's built-in interrupt handler records the
computer's current memory configuration, then sets the
computer's memory configuration to a standard state so that your
program's interrupt handler always begins running in the same
memory configuration.

Next the built-in interrupt handler checks to see if the interrupt was
caused by a break instruction, and handles it as just described under
"Interrupt Handling on the 65C02 and 6502." If it was not a break, it
passes control to the interrupt-handling routine whose address is
stored at $3FE and $3FF of main memory. Normally, that would be
the operating system's interrupt handler, unless you have installed
one of your own.

After your program's interrupt handler returns (with an RTI), the
built-in interrupt handler restores the memory configuration, and
then does another RTI to return to where it was when the interrupt
occurred. Table 6-8 illustrates this entire process. Each of these
steps is explained later in this chapter.

Interrupts on the enhanced Apple lie 151

Table 6-8
Interrupt-handling sequence

Interrupted
program Processor

Program-Push address
Push status

Built-in handler User's handler

]MP ($FFFE)--Save old and set
new memory
configuration

If BRK, then go
to break handler
($FA47)----------

Our interrupt?

NO: Push address
Push status
]MP ($3FE)-Handle interrupt

YES: Handle it

Restore memory-RTI
configuration

Pull status-RTI
Program-Pull address

Saving the Apple lle's memory configuration

The built-in interrupt handler saves the Apple He's memory
configuration and then sets it to a known state according to these
rules:

o Text Page 1 is switched in (PAGE2 off) so that main screen holes
are accessible if 80STORE and PAGE2 are on.

o Main memory is switched in for reading (RAMRD off).

o Main memory is switched in for writing (RAMWRT off).

o $DOOO-$FFFF ROM is switched in for reading (RDLCRAM off).

o Main stack and zero page are switched in (AL TZP off).

o The auxiliary stack pointer is preserved, and the main stack
pointer is restored. (See the next section, "Managing Main and
Auxiliary Stacks.")

152 Chapter 6: Programming for Peripheral Cards

Important Because main memory is switched in, all memory addresses
used later in this chapter are in main memory unless otherwise
specified.

Managing main and auxiliary stacks
Apple has adopted a convention that allows the Apple Ile to be run
with two separate stack pointers since the Apple Ile with an Extended
8()-Column Text Card has two stack pages. Two bytes in the auxiliary
stack page are used as storage for inactive stack pointers: $0100 for
the main stack pointer when the auxiliary stack is active, and $0101
for the auxiliary stack pointer when the main stack is active.

When a program using interrupts switches in the auxiliary stack for
the first time, it must place the value of the main stack pointer at
$0100 (in the auxiliary stack) and initialize the auxiliary stack pointer
to $FF (the top of the stack). When it subsequently switches from
one stack to the other, it must save the current stack pointer before
loading the pointer for the other stack.

The current stack pointer is stored at $0101, and the main stack
pointer is retrieved from $0100 when an interrupt occurs while the
auxiliary stack is switched in. Then the main stack is switched in. The
stack pointer is restored to its original value after the interrupt has
been handled.

Important The bulit-in XFER routine does not support this procedure. If you
are using XFER to swap stacks, you must use code like the
following to set up the stack pointers and stack.

Interrupts on the enhanced Apple lie 153

* This example transfers control from a code segment running
* using the main stack to one running using the aux stack.

*
1 XFERALT
2

3
4
5
6
7

8

9
10
11

12
13

14
15
16
17

5
6
7
16

PHP
PLA
SE!
TSX
STA SETALTZP
STX $100
LDX $101
TXS
PHA
PLP
LDA #DESTL
STA $3ED
LDA #DESTH
STA $3EE

;preserve interrupt status in A

;disable interrupts
;save main stack pointer at $100
;and swap zero pages

;now restore aux stack pointer

;and interrupt status

;set destination address

SEC/CLC ; set direction of transfer ·
;V=l for alt zero page(RTS=$60)
;do transfer

BIT RTS
JMP XFER
To transfer control the other direction, change the following lines
STX $101
LDX $100
STA SETSTDZP
CLV ;V=O for main zp

The user's interrupt handler at $3FE
If your program has an interrupt handler, it must place the entry
address of that handler at $03FE. After it sets the machine to a
standard state, the He's internal interrupt handler transfers control
to the routine whose address is in the vector at $03FE.

It is very important for a peripheral card to place its slot address in
MSLOT to support interrupts whenever it is executing code in its
$C800 space. Whenever the $C3 page is referenced, the Ile
automatically switches in its own $C800 ROM space. When the
interrupt handler finishes, it restores the $C800 space to the
original owner using MSLOT ($07F8).

Warning Be careful to Install Interrupt handlers according to the rules of
the operating system that you are using. Placing the address of
your program's Interrupt handler at $03FE disconnects the
operating system's Interrupt handler.

154 Chapter 6: Programming for Peripheral Cards

Table 6-9
BRK handler information

Information Location

Program counter $3A
Oow byte)

Program counter $3B
(high byte)

Encoded memory $44
state

Accumulator $45

X register $46

Y register $47

Status register $48

The $03FE interrupt handler must do these things:

1. Verify that the interrupt came from the expected source.

2. Handle the interrupt as desired.

3. Clear the appropriate interrupt soft switch.

4. Return with an RTI.

Here are some things to remember if you are dealing with programs
that must run in an interrupt enviroment:

o There is no guaranteed maximum response time for interrupts
because the system may be doing a disk operation that lasts for
several seconds.

o Once the built-in interrupt handler is called, it takes at least
150 to 200 microseconds for it to call your interrupt-handling
routine. After your routine returns, it takes 40 to 140
microseconds to restore memory and return to the interrupted
program.

o If memory is in the standard state when the interrupt occurs, the
total overhead for interrupt processing is about
150 microseconds less than if memory is in the worst state. (The
worst state is one that requires the most work to set up for:
80STORE and PAGE2 on; auxiliary memory switched in for
reading and writing; bank-switched memory page 2 in the
auxiliary bank switched in for reading and writing; and internal
$Cn00 ROM switched in).

o Interrupt overhead will be greater if your interrupt handler is
installed through an operating system's interrupt dispatcher. The
length of delay depends on the operating system, and on
whether the operating system dispatches the interrupt to other
routines before calling yours.

Handling break instructions
The 65C02 treats a break instruction (BRK, opcode $00) just like a
hardware interrupt. After the interrupt handler sets the memory
configuration, it checks to see if the interrupt was caused by a break
(bit 4 of the status byte is set) and, if it was, jumps to a break
handling routine. This routine saves the state of the computer at the
time of the break as shown in Table 6-9.

Finally the break routine jumps to the routine whose address is
stored at $3FO and $3Fl.

The encoded memory state in location $44 is interpreted as shown
in Table 6-10.

Interrupts on the enhanced Apple lie 155

Table 6-10
Memory configuration Information

Bit 7 = 1

Bit 6 = 1

Bit5=1

Bit 4 = 1

Bit3=1

Bit 2 = 1

Bit 1=1

Bit 0 = 1

if auxiliary zero page and auxiliary stack are switched in

if 80STORE and PAGE2 both on

if auxiliary RAM switched in for reading

if auxiliary RAM switched in for writing

if bank-switched RAM being read

if bank-switched $DOOO Page 1 switched in and
RAMREAD set

if bank-switched $DOOO Page 2 switched in and
RAMREAD set

if internal Cs ROM was switched in (Ile only)

Interrupt differences: Apple lie versus Apple lie
If you are writing software for both the Apple Ile and the Apple Ile,
you should know that there are several important differences
between the interrupts on the enhanced Apple Ile and those on the
Apple Ile. They are the following:

o In the Apple Ile ROM, $FFFE points to $C803; in the Apple Ile
ROM, to $C3FA. To ensure that the proper interrupt vectors are
placed into the Language Card RAM space, always copy them to
the RAM from the ROM. (When you initialize built-in devices on
the Ile, these vectors are automatically updated).

o There is no shared $C800 ROM in the Apple Ile. Peripheral cards
share this space in the Apple Ile. Thus it is crucial that the slot
address of the peripheral card using the $C800 space is stored in
MSLOT ($07F8). When the interrupt handler goes to the internal
$C3 space, the Ile hardware switches in its own $C800 space.
When the interrupt handler finishes, it restores the $C800 space
to the slot whose address is in MSLOT.

o The Apple Ile $C800 space is always switched in. The enhanced
Apple Ile's interrupt handler preserves the state of the $C800-
space switch and then switches in the slot 1/0 space. This means
that when restoring the state of the system using the value placed
in location $44, break-handling routines must restore one more
value on the Apple Ile than on the Apple Ile.

156 Chapter 6: Programming for Peripheral Cards

Chapter 7

Hardware
Implementation

157

Table 7-1

Most of this manual describes functions-what the Apple Ile does.
This chapter, on the other hand, describes objects-the pieces of
hardware the Apple Ile uses to carry out its functions. If you are
designing a piece of peripheral hardware to attach to the Apple Ile,
or if you just want to know more about how the Apple Ile is built, you
should study this chapter.

Extended keyboard lie Because the extended keyboard lie uses several new
components and Includes the Extended 80-Column Text Card
as a standard feature, Its schematic diagram Is slightly different
from that of the original and enhanced lle's. The schematic for
the extended keyboard lie is provided in Figure 7- l 6a-d at the
end of this chapter. If you have an extended keyboard fie you
should refer to this schematic whenever the text refers to the
schematic for the original and the enhanced He's
(Figure 7-1 Sa-d).

Environmental specifications

Summary of environmental
specifications

The Apple Ile is quite sturdy when used in the way it was intended.
Table 7-1 defines the conditions under which the Apple IIe is
designed to function properly.

Operating 10° to 40° C
temperature (50° to 104° F)

Relative 10% to 9()0/o
humidity

Line voltage 95 to 127 VAC

You should treat the Apple IIe with the same kind of care as any
other electrical appliance. You should protect it from physical
violence, such as hammer blows or defenestration. You should
protect the mechanical keyboard and the electrical connectors
inside the case from spilled liquids, especially those with dissolved
contaminants, such as coffee and cola drinks.

In normal operation, enough air flows through the slots in the case
to keep the insides from getting too hot, although some of the parts
inside the Apple IIe normally get rather warm to the touch. If you
manage to overheat your Apple IIe, by blocking the ven~ation slots
in the top and bottom for example, the first symptom wilt be erratic
operation. The memory devices in the Apple IIe are sensitive to
heat: when they get too hot, they occasionally change a bit of data.
The exact result depends on what kind of program you are running
and on just which bit of memory is affected.

158 Chapter 7: Hardware Implementation

The power supply
The power supply in the Apple Ile operates on normal household
AC power and provides enough low-voltage electrical power for the
built-in electronics plus a full complement of peripheral cards,
including disk controller cards and communications interfaces.
The basic specifications of the power supply are listed in Table 7-2.

The Apple He's power cord should be plugged into a three-wire 110-
to 120-volt outlet. You must connect the Apple Ile to a grounded
outlet or to a good earth ground. In addition, the line voltage must
be in the range given in Table 7-2. If you try to operate the Apple Ile
from a power source with more than 127 volts AC, you will damage
the power supply.

Table 7-2
Power supply specifications

Line voltage

Maximum power
consumption

Supply voltages

Maximum supply
currents

Maximum ease
temperature

97 to 127VAC

60W continuous
SOW intermittent•

+5V±3%
+ll.8V ±6%
-5.2V±10%
-12V ±10%

+5V: 2.5A
+12V: l.5A continuous,

2. 5A intermittent•
-5V: 250mA
-12V: 250mA

40° c (104° F)

• Intermittent operation: The Apple Ile can safely
operate for up to 20 minutes at the higher load if
followed by at least 10 minutes at normal load.

The Apple Ile uses a custom-designed switching-type power supply.
It is small and lightweight, and it generates less heat than other types
of power supplies do.

The power supply 159

The Apple Ile's power supply works by converting the AC line
voltage to DC and using this DC voltage to power a variable
frequency oscillator. The oscillator drives a small transformer with
many separate windings to produce the different voltages required.
A circuit compares the voltage of the +5-volt supply with a reference
voltage and feeds an error signal back to the oscillator circuit. The
oscillator circuit uses the error signal to control the frequency of its
oscillation and keep the output voltages in their normal ranges.

The power supply includes circuitry to protect itself and the other
electronic parts of the Apple Ile by turning off all four supply
voltages whenever it detects one of the following malfunctions:

o any supply voltage short-circuited to ground

o the power-supply cable disconnected

o any supply voltage outside the normal range

Any time one of these malfunctions occurs, the protection circuit
stops the oscillator, and all the output voltages drop to zero. After
about half a second, the oscillator starts up again. If the malfunction
is still occurring, the protection circuit stops the oscillator again.
The power supply will continue to start and stop this way until the
malfunction is corrected or the power is turned off.

Warning If you think the power supply Is broken, do not attempt to
repair It yourself. The power supply Is In a sealed enclosure
because some of Its circuits are connected directly to the
power line. Special equipment Is needed to repair the power
supply safely, so see your authorized Apple dealer for service.

The power connector
The cable from the power supply is connected to the main circuit
board by a six-pin connector with a strain-relief catch. The
connector pins are identified in Table 7-3 and Figure 7-15d (or
Figure 7-16d for the extended keyboard Ile).

Table 7-3
Power connector signal specifications

Pin

1,2
3
4
5
6

Signal

Ground
+5V
+12V
-12V
-5V

160 Chapter 7: Hardware Implementation

Description

Common electrical ground
+5V from power supply
+ 12V from power supply
-12V from power supply
-5V from power supply

See Appendix A for a description
of the 65C02's Instruction set
and electrical characteristics.

The 65C02 microprocessor
The enhanced Apple Ile uses a 65C02 microprocessor as its central
processing unit (CPU). The 65C02 in the Apple He runs at a clock
rate of 1.023 MHz and performs up to 500,000 eight-bit operations
per second. You should not use the clock rate as a criterion for
comparing different types of microprocessors. The 65C02 has a
simpler instruction cycle than most other microprocessors and it
uses instruction pipelining for faster processing. The speed of the
65C02 with a lMHz clock is equivalent to other types of
microprocessors with clock rates up to 2.5MHz.

The 65C02 has a 16-bit address bus, giving it an address space of
64K (2 to the 16th power, or 65,536) bytes. The Apple Ile uses
special techniques to address outside of this range: see the sections
"Bank-Switched Memory" and "Auxiliary Memory and Firmware"
in Chapter 4 and the section "Switching I/0 Memory" in Chapter 6.

Table 7-4
6SC02 microprocessor specifications

Type 65C02

Register 8-bit accumulator (A)
complement 8-bit index registers (X,Y)

8-bit stack pointer (S)
8-bit processor status (P)
16-bit program counter (PC)

Data bus 8 bits wide

Address bus 16 bits wide

Address range 65,536 (64K)

Interrupts IRQ (maskable)
NMI (nonmaskable)
BRK (programmed)

Operating voltage +5V (± 5%)

Power dissipation 5 mW (at 1 MHz)

The 65C02 microprocessor 161

65C02 timing
The operation of the Apple Ile is controlled by a set of synchronous
timing signals, sometimes called clock stgnals. In electronics, the
word clock is used to identify signals that control the timing of
circuit operations. The Apple Ile doesn't contain the kind of clock
you tell time by, although its internal timing is accurate enough that
a program running on the Apple Ile can simulate such a clock.

The frequency of the oscillator that generates the master timing
signal is 14.31818 MHz. Circuitry in the Apple Ile uses this clock
signal, named 14M, to produce all the other timing signals. These
timing signal~ perform two major tasks: controlling the computing
functions, and generating the video display. The timing signals
directly involved with the operation of the 65C02 (and 6502 on the
original version of the Apple Ile) are described in this section.
Other timing signals are described in this chapter in the sections
"RAM Addressing," "Video Display Modes," and "The Expansion
Slots."

The main 65C02 timing signals are listed in Table 7-5, and their
relationships are diagrammed in Figure 7-1. The 65C02 clock
signals are 01 and 00, complementary signals at a frequency of
1.02273 MHz. The Apple Ile signal named 00 is equivalent to the
signal called 02 in the hardware manual. (It isn't identical: it's a few
nanoseconds early.)

The operations of the 65C02 are related to the clock signals in a
simple way: address during 01, data during 00. The 65C02 puts an
address on the address bus during 01. This address is valid not later
than 140 nanoseconds after 01 goes high and remains valid through
all of 00. The 65C02 reads or writes data during 00. If the 65C02 is
writing, the read/write signal is low during 00 and the 6SC02 puts
data on the data bus. The data is valid not later than 75
nanoseconds after 00 goes high. If the 65C02 is reading, the
read/write signal remains high. Data on the data bus must be valid
no later than 50 nanoseconds before the end of 00.

162 Chapter 7: Hardware Implementation

14M

7M

I • 280
ns • I 210 n; I---..... ~--

Q3--.....

~490 ns----1 I
<f>O --...,I I CPU Phase ._I __

I r-490ns-1
....---

</>1---

--l l-140 ns (Max.) 30 ns (Min.)-l 1-
ADDR
From 65C02

I 60 ns (Min.), I
100 ns (Max.) -J I- L+J 1-

DATA From 65C02 (Write) X ><=
50 ns (Min.) -J f--

DATA to 65C02 (Read) · ==x=x=
10 ns (Min.) -j j-

Figure 7-1
65C02 timing signals

Table 7-5
65C02 timing signal descriptions

Signal Description

14M Master oscillator, 14.318 MHz; also 80-column dot clock

VID7M Intermediate timing signal and 40-column dot clock

Q3 Intermediate timing signal, 2.045 MHz with
asymmetrical duty cycle

00 Phase 0 of 65C02 clock, 1.0227 MHz; complement of 01

The 65C02 microprocessor 163

The custom integrated circuits
Most of the circuitry that controls memory and I/0 addressing in
the Apple Ile is in three custom integrated circuits called the
Management Unit (MMU), the Input/Output Unit OOU), and the
Programmed Array Logic device (PAL). The soft switches used for
controlling the various 1/0 and addressing modes of the Apple Ile
are addressable flags inside the MMU and the IOU. The functions of
these two devices are not as independent as their names suggest;
working together, they generate all of the addressing signals. For
example, the MMU generates the address signals for the CPU, while
the IOU generates similar address signals for the video display.

The Memory Management Unit
The circuitry inside the Memory Management Unit (MMU)
implements these soft switches, which are described in the
indicated chapters in this manual:

o Page 2 display (PAGE2): Chapter 2

o high-resolution mode (HIRES): Chapter 2

o store to 80-colurnn card (SOSTORE): Chapter 2

o select bank 2: Chapter 4

o enable bank-switched RAM: Chapter 4

o read auxiliary memory (RAMRD): Chapter 4

o write auxiliary memory (RAMWRT): Chapter 4

o auxiliary stack and zero page (ALTZP): Chapter 4

o slot ROM for connector #3 (SLOTC3ROM): Chapter 6

D slot ROM in I/0 space (SLOTCXROM): Chapter 6

The 64K dynamic RAMs used in the Apple Ile use a multiplexed
address, as described later in this chapter in the section "Dynamic
RAM Timing." The MMU generates this multiplexed address for
memory reading and writing by the 65C02 CPU. The pinouts and
signal descriptions of the MMU are shown in Figure 7-2 and
Table 7-6.

164 Chapter 7: Hardware Implementation

GND
AO
</>O
Q3

1 -..:::::7 40

PRAS'
RAO
RAl
RA2
RA3
RA4
RA5
RA6
RA7

R/W'
INH'

DMA'
ENSO'
KBD'

ROMEN2'
ROMENl'

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 7-2
MMU pinouts

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Al
A2
A3
A4
A5
A6
A7
AS
A9
AlO
All
Al2
Al3
Al4
Al5
+5V
Cxxx
RAMEN'
R/W' 245
MD7

Table 7-6
MMU signal descriptions

Pin Signal Description

1 GND Power and signal common
2 AO 65C02 address input
3 0() Clock phase 0 input
4 Q3 Timing signal input
5 PRAS' Memory row-address strobe
6-13 RAO-RA7 Multiplexed address output
14 R/W' 65C02 read-write control signal
15 INH' Inhibits main memory (tied to +5\1)
16 DMA' Controls data bus for DMA transfers
17 ENSO' Enables auxiliary RAM
18 KBD' Enables keyboard data bits 0--6
19 ROMEN2' Enables ROM (tied to ROMENl ')
20 ROMENl' Enables ROM (tied to ROMEN2')
21 MD7 State of MMU flags on data bus bit 7
22 RW'245 Controls 74LS245 data-bus buffer
23 RAMEN' Enables main RAM
24 Cxxx Enables peripheral-card memory
25 +5V Power
26-40 A15-Al 65C02 address input

The Input/Output Unit

The circuitry inside the Input/Output Unit OOU) implements the
following soft switches, all described in Chapter 2 in this manual:

o Page 2 display (PAGE2)

o high-resolution mode (HIRES)

o text mode (TEX1)

o mixed mode (MIXED)

o 80-column display (80COL)

o text display mode select (ALTCHAR)

o any-key-down

o annunciators

o vertical blanking (VBL)

The custom integrated circuits 165

GND
GR

SEGA
SEGB

vc
80VID'
CASSO

1 'CJ 40

SPKR
MD7
ANO
ANl
AN2
AN3

R/W'
RESET'

(n.c.)
RAO
RAl
RA2
RA3

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 7-3
IOU plnouts

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

HO
SYNC'
WNDW'
CLRGAT'
RAIO'
RA9'
VID6
VID7
KSTRB
AKO
COxx
A6
+5V
Q3
</>(J

PRAS'
RA7
RA6
RA5
RA4

The 64K dynamic RAMs used in the Apple Ile require a multiplexed
address, as described later in this chapter in the section "Dynamic
RAM Timing." The IOU generates this multiplexed address for the
data transfers required for display and memory refresh during clock
phase 1. The way this address is generated is described later in this
chapter in the section "Display Address Mapping." The pinouts
and signal descriptions for the IOU are shown in Figure 7-3 and
Table 7-7.

Table 7-7
IOU signal descriptions

Pin

1

2

3

4

5

6

7

8

9

10-13

14

15

16

17-24

Signal

GND

GR

SEGA

SEGB

vc

80V1D'

CASSO

SPKR

MD7

ANO-AN3

R/W'

RESET'

RAO-RA7

Description

Power and signal common

Graphics mode enable

In text mode, works with VC (see pin 5)
and SEG B to determine character row
address

In text mode, works with VC (see pin 5)
and SEGA; in graphics mode, selects
high resolution when low, low
resolution when high

Display vertical counter bit: in text
mode, SEGA, SEGB, and VC
determine which of the eight rows of a
character's dot pattern to display; in
low resolution, selects upper or lower
block defined by a byte

80-column video enable

Cassette output signal

Speaker output signal

Internal IOU flags for data bus (bit 7)3

Annunciator outputs

65C02 read-write control signal

Power on and reset output

(Nothing is connected to this pin.)

Video refresh multiplexed RAM
address (phase 1)

166 Chapter 7: Hardware Implementation

14M 1 ~ 20 +5V
7M 2 19 PRAS'

3.58M 3 18 (n.c.)
HO 4 17 PCAS'

VID7 5 16 Q3
SEGB 6 15 <J>O

GR 7 14 </>l
RAMEN' 8 13 VID7M

80VID' 9 12 LOPS'
GND 10 11 ENTMG

Figure 7-4
PAL pinouts

Table 7·7 (continued)
IOU slanal descriptions

Pin Slgnai Description

25 PRAS' Row-address strobe (phase O)

26 00 Master clock phase 0

27 Q3 Intermediate timing signal

28 +5V Power

29 A6 Address bit 6 from 65C02

30 CO xx VO address enable

31 AKD Any-key-down signal

32 KSTRB Keyboard strobe signal

33,34 VIDD7,VIDD6 Video display data bits

35,36 RA9',RA10' Video display control bits

37 CLRGAT' Color-burst gate (enable)

38 WNDW' Display blanking signal

39 SYNC' Display synchronization signal

40 HO Display horizontal timing signal
Oow bit of character counter)

The PAL device
A Programmed Array Logic device, type PAL 16R8, generates
several timing and control signals in the Apple Ile. These signals
are listed in Table 7-8. The PAL pinouts are given in Figure 7-4.

Table 7-8
PAL slanal descriptions

Pin Signal Description

1 14M 14.31818 MHz master timing signal
2 7M 7.15909 MHz timing signal
3 3.58M 3.579545 MHz timing signal
4 HO Horizontal video timing signal
5 VID7 Video data bit 7
6 SEGB Video timing signal
7 GR Video display graphics-mode enable
8 RAM EN' RAM enable (CAS enable)
9 80VlD' Enable 80-column display mode

The custom Integrated circuits 167

1\:::7 28 +5V +5V
2 27 Al2 +5V
3 26 A7 +5V
4 25 A6 A8
5 24 A5 A9
6 23 A4 All
7 22 A3 ROMENx'
8 21 A2 AlO
9 20 Al CE'

10 19 AO MD7
11 18 MOO MD6
12 17 MDI MD5
13 16 MD2 MD4
14 15 GND MD3

Figure 7-5
2364 ROM plnouts

Table 7-8 (continued)
PAL slonal descriptions

Pin Signal

10 GND
11 ENTMG
12 LDPS'
13 VID7M
14 ==1
15 00
16 Q3
17 PCAS'
18 N.C.
19 PRAS'
20 +5V

DescrlpHon

Power and signal common
Enable master timing
Video shift-register load enable
Video dot dock, 7 or 14 MHz
Phase 1 system dock
Phase 0 system dock
Intermediate timing and strobe signal
RAM column-address strobe
(This pin is not used.)
RAM row-address strobe
Power

Memory addressing
The Apple He's microprocessor can address 65,536 locations.
Apple Ile uses this entire address space, and then some: some areas
in memory are used for more than one function. The following
sections describe the memory devices used in the Apple Ile and the
way they are addressed. Input and output also use portions of the
memory address space; refer to the section "Peripheral-Card
Memory Spaces" in Chapter 6 for information.

ROM addressing

In the original and the enhanced Apple He's, the following
programs are permanently stored in two type 2364 8K by seven-bit
ROMs (read-only memory):

o Applesoft editor and interpreter

o System Monitor

o 80-column display firmware

o self-test routines

These two ROMs are enabled by two signals named ROMENl and
ROMEN2. The ROM enabled by ROMENl, sometimes called the
Diagnostics ROM, occupies the memory address space from $C100
to $DFFF. The address space from $C300 to $C3FF and from $C800
to $CFFF contains the 80-column display firmware. Those address
spaces are normally assigned to ROM on a peripheral card in slot 3.

168 Chapter 7: Hardware Implementation

NC
Al2
A7
A6
A5
A4
A3
A2
Al
AO

MOO
MDI
MD2
GND

Extended keyboard lie

\..../
1 28 vcc
2 27 CSl
3 26 Al3
4 25 A8
5 24 A9
6 23 All
7 22 OE
8 21 AlO
9 20 CE

10 19 MD7
11 18 MD6
12 17 MD5
13 16 MD4
14 15 MD3

Figure 7-6
23128 ROM pinouts

A7
A6
A5
A4
A3
A2
Al
AO

MOO
MDI
MD2
GND

I "°""'C7 24
2 23
3 22
4 21
5 20
6 19
7 18
8 17
9 16

10 15
11 14
12 13

Figure 7-7
2316 ROM pinouts

+5V
AB
A9
+5V
KBD'
GND
ENKBD'
(n.c.)
MD6
MD5
MD4
MD3

For a discussion of the way the 80-column firmware overrides the
peripheral card, see the section "Other Uses of 1/0 Memory Space"
in Chapter 6. The pinouts of the 2364 ROMs are given in Figure 7-5.

The extended keyboard lie has the same programs stored In
ROM as the original and enhanced Ila's do. However, the
extended keyboard lie uses a single 23128 IC (l 28K ROM)
Instead of the two 2364 ICs used in the original and the
enhanced lie. This new ROM IC is enabled by the ROMEN signal,
which Is a logical AND of the ROMENl and ROMEN2 signals. The
plnout diagram for the 23128 ROM Is given in Figure 7-6.

Two other portions of the Diagnostics ROM, addressee!. from $C100
to $C2FF and from $C400 to $C7FF, contain the built-in self-test
routines. These address spaces are normally assigned to the
peripheral cards; when the self-test programs are running, the
peripheral cards are disabled.

The remainder of the Diagnostics ROM, addressed from $DOOO to
$DFFF, contains part of the Applesoft BASIC interpreter.

The ROM enabled by ROMEN2, sometimes called the Monitor
ROM, occupies the memory address space from $E000 to $FFFF.
This ROM contains the rest of the Applesoft interpreter, in the
address space from $EOOO to $EFFF, and the Monitor subroutines,
from $FOOO to $FFFF.

The other ROMs in the Apple Ile are a type 2316 ROM used for the
keyboard character decoder and a type 2333 ROM used for
character sets for the video display. This 2333 ROM is rather large
because it includes a section of straight-through bit-mapping for the
graphics modes. This way, graphics display video can pass through
the same circuits as text without additional switching circuitry. The
2316's pinout is given in Figure 7-7, and the 2333's pinout is given in
Figure 7-8.

RAM addressing
The RAM (programmable memory) in the Apple Ile is used to store
both programs (along with their associated data) and the video
display. The RAM in both the original and the enhanced Ile consists
of eight 64Kxl RAM ICs (Figure 7-9). The RAM in the extended
keyboard Ile consists of two 64Kx4 RAM ICs (Figure 7-10).

Memory addressing 169

VID4
VID3
VI02
V!Dl
VIDO

vc
SEGB
SEGA

DO
Dl
02

GNO

1 '-' 24
2 23
3 22
4 21
5 20
6 19
7 18
8 17
9 16

10 15
11 14
12 13

Figure 7-8
2333 ROM plnouts

'-'

+5V
VID5
RA9
GR
WNDW'
RAIO
ENVID'
07
06
05
04
03

1 16 +5V GNO
2 15 MDx CAS'
3 14 R/W' MOx
4 13 RAS' RAl
5 12 RA7 RA4
0 11 RA5 RA3
7 10 RA6 RA2
8 9 +5V RAO

Figure 7-9
64Kxl RAM pinouts

OE
1/01
1/02

WRITE
RAS

A6
A5
A4

vcc

1
2
3
4
5
6
7
8
9

Figure 7-10

\.../
18
17
16
15
14
13
12
11
10

64Kx4 RAM plnouts

vss
1/04
CAS
1/03
AO
Al
A2
A3
A7

The areas in RAM that are used for the display are accessed both by
the 65C02 microprocessor and by the video display circuits. In
some computers, this dual access results in addressing conflicts
(cyde stealing) that can cause temporary dropouts in the video
display. This problem does not occur in the Apple Ile, thanks to the
way the microprocessor and the video circuits share the memory.

The memory circuits in the Apple Ile take advantage of the two
phase system dock described earlier in this chapter in the section
"65C02 Timing" to interleave the microprocessor memory accesses
and the display memory accesses so that they never interfere with
each other. The microprocessor reads or writes to RAM only during
00, and the display circuits read data only during 01.

Dynamic-RAM refreshment

The image on a video display is not permanent; it fades rapidly and
must be refreshed periodically. To refresh the video display, the
Apple Ile reads the data in the active display page and sends it to the
display. To prevent visible flicker in the display, and to conform to
standard practice for broadcast video, the Apple Ile refreshes the
display 6o times per second.

The dynamic RAM devices used in the Apple Ile also need a kind of
refresh, because the data is stored in the form of electric charges,
which diminish with time and must be replenished every so often.
The Apple Ile is designed so that refreshing the display also
refreshes the dynamic RAMs. The next few paragraphs explain how
this is done.

The job of refreshing the dynamic RAM devices is minimized by the
structure of the devices themselves. The individual data cells in
each RAM device are arranged in a rectangular array of rows and
columns. When the device is addressed, the part of the address that
specifies a row is presented first, followed by the address of the
column. Splitting information into parts that follow each other in
time is called multtplexing. Because only half of the address is
needed at one time, multiplexing the address reduces the number
of pins needed for connecting the RAMs.

Different manufacturers' 64K RAMs have cell arrays of either 128
rows by 512 columns or 256 rows by 256 columns. Only the row
portion of the address is used in refreshing the RAMs.

170 Chapter 7: Hardware Implementation

Table 7-9
RAM address multiplexing

Mux'd Row Column
address address address

RAO AO A9
RAl Al A6
RA2 A2 AlO
RA3 A3 All
RA4 A4 A12
RA5 A5 A13
RA6 A7 A14
RA7 AS A15

Now consider how the display is refreshed. As described later in this
chapter in the section "The Video Counters," the display circuitry
generates a sequence of 8, 192 memory addresses in high-resolution
mode; in text and low-resolution modes, this sequence is the 1,024
display-page addresses repeated eight times. 1be display address
cycles through this sequence 60 times a second, or once every 17
milliseconds. The way the low-order address lines are assigned to
the RAMs, the row address cycles through all 256 possible values
once every two milliseconds. (See Figure 7-11.) This more than
satisfies the refresh requirements of the dynamic RAMs.

Dynamic-RAM timing

The Apple Ile's microprocessor clock runs at a moderate speed,
about 1.023 MHz, but the interleaving of CPU and display cycles
means that the RAM is being accessed at a 2 MHz rate, or a cycle
time of just under 500 nanoseconds. Data for the CPU is strobed by
the falling edge of 00, and display data is strobed by the falling edge
of 01, as shown in Figure 7-11.

The RAM timing looks complicated because the RAM address is
multiplexed, as described in the previous section. The MMU takes
care of multiplexing the address for the CPU cycle, and the IOU
performs the same function for the display cycle. The multiplexed
address is sent to the RAM ICs over the lines labeled RAO-RA7.
Along with the other timing signals, the PAL device generates two
signals that control the RAM addressing: row-address strobe (RAS)
and column-address strobe (CAS).

Memory addressing 171

14M

7M

Q3---

<PO--.....
CPU Phase

I
¢1 __ Video Phase

Figure 7-11
RAM timing signals

Table 7-10
RAM timing signal descriptions

Signal

00
01
RAS
CAS
Q3
RAO-RA7
MDO-MD7

172 Chapter 7: Hardware Implementation

Description

Clock phase 0 (CPU phase)
Clock phase 1 (display phase)
Row-address strobe
Column-address strobe
Alternate RAM/column-address strobe
Multiplexed address bus
Internal data bus

The video display
The Apple Ile produces a video signal that creates a display on a
standard video monitor or, if you add an RF modulator, on a black
and-white or color television set The video signal is a composite
made up of the data that is being displayed plus the horizontal and
vertical synchronization signals that the video monitor uses to
arrange the lines of display data on the screen.

+ Vtdeo standards: Apple He's manufactured for sale in the U.S.
generate a video signal that is compatible with the standards set
by the NTSC (National Television Standards Committee).
Apple He's manufactured for sale in European countries
generate video that is a modified NTSC signal.

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a 1 corresponds to a
voltage that generates a bright dot, and a 0 to a dark dot. The
display bit stream is generated in bursts that correspond to the
horizontal lines of dots on the video screen. The signal named
WNDW' is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen. During these intervals, called the
blanktng tntervals, the display is blank and the WNDW' signal is
high. The synchronization signals, called sync for short, are
produced by making the signal named SYNC' low during portions of
the blanking intervals. The sync pulses are at a voltage equivalent to
blacker-than-black video and don't show on the screen.

The video counters
The address and timing signals that control the generation of the
video display are all derived from a chain of counters inside the
IOU. Only a few of these counter signals are accessible from outside
the IOU, but they are all important in understanding the operation
of the display generation process, particularly the display-memory
addressing described in the next section.

The video display 173

The horizontal counter is made up of seven stages: HO, Hl, H2, H3,
H4, HS, and HPE'. The input to the horizontal counter is the 1 MHz
signal that controls the reading of data being displayed. The
complete cycle of the horizontal counter consists of 6S states. The
six bits HO through HS count normally from 0 to 63, then start over
at 0. Whenever this happens, HPE' forces another count with HO
through HS held at 0, thus extending the total count to 6S.

The IOU uses the 40 horizontal count values from 2S through 64 in
generating the low-order part of the display data address, as
described later in this chapter in the section "Display Address
Mapping." The IOU uses the count values from 0 to 24 to generate
the horizontal blanking, the horizontal sync pulse, and the color
burst gate.

When the horizontal count gets to 6S, it signals the end of a line by
triggering the vertical counter. The vertical counter has nine stages:
VA, VB, VC, VO, Vl, V2, V3, V4, and VS. When the vertical count
reaches 262, the IOU resets it and starts counting again from zero.
Only the first 192 scanning lines are actually displayed; the IOU uses
the vertical counts from 192 to 261 to generate the vertical blanking
and sync pulse. Nothing is displayed during the vertical blanking
interval. (The vertical line count is 262 rather than the standard
262.S because, unlike normal television, the Apple Ile's video
display is not interlaced.)

•> Smooth animation: Animation displays sometimes have an
erratic flicker caused by changing the display data at the same
time it is being displayed. You can avoid this on the Apple Ile
by reading the vertical-blanking signal (VBL) at location $C019
and changing display data while VBL is low only (data value less
than 128).

Display memory addressing
As desc.r:ibed in Chapter 2 in the section •Addressing Display Pages
Directly," data bytes are not stored in memory in the same
sequence in which they appear on the display. You can get an idea
of the way the display data is stored by using the Monitor to set the
display to graphics mode, then storing data starting at the
beginning of the display page at hexadecimal $400 and watching the
effect on the display. If you do this, you should use the graphics
display instead of text to avoid confusion: the text display is also
used for Monitor input and output.

17 4 Chapter 7: Hardware Implementation

The requirements of the RAM
refreshing are discussed earlier in
this chapter in the section
"Dynamic-RAM Refreshment.·

If you want your program to display data by storing it directly into
the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown in
the section "Video Display Pages" in Chapter 2. The descriptions
that follow will help you understand how this address
transformation is done and why it is necessary. They will not (alas!)
eliminate that necessity.

The address transformation that folds three rows of forty display
bytes into 128 contiguous memory locations is the same for all
display modes, so it is described first. The differences among the
different display modes are then described in the section "Video
Display Modes."

Display address mapping

Consider the simplest display on the Apple Ile, the 40-column text
mode. To address 40 columns requires 6 bits, and to address 24
rows requires another 5 bits, for a total of 11 address bits.
Addressing the display this way would involve 2048 (2 to the
eleventh power) bytes of memory to display a mere 960 characters.
The 80-column text mode would require 4096 bytes to display 1920
characters. The leftover chunks of memory that were not displayed
could be used for storing other data, but not easily, because they
would not be contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the IOU transforms them into
the new address signals described below. The transformed display
address must meet the following criteria:

o map the 960 bytes of 40-column text into only 1024 bytes

o scan the low-order address to refresh the dynamic RAMs

o continue to refresh the RAMs during video blanking

The transformation involves only horizontal counts H3, H4, and
H5, and vertical counts V3 and V4. Vertical count bits VA, VB, and
VC address the lines making up the characters~ and are not involved
in the address transformation. The remaining low-order count bits,
HO, Hl, H2, VO, Vl, and V2 are used directly, and are not involved
in the transformation.

The video display 17 5

The IOU performs an addition that reduces the five significant count
bits to four new signals called SO, Sl, S2, and S3, where S stands for
sum. Figure 7-12 is a diagram showing the addition in binary form,
with V3 appearing as the carry in and H5 appearing as its
complement H5'. A constant value of 1 appears as the low-order bit
of the addend. The carry bit generated with the sum is not used.

If this transformation seems obscure, try it with actual values. For
example, for the upper-left corner of the display, the vertical count
is 0 and the horizontal count is 24: HO, Hl, H2, and H5 are O's, and
H3, and H4 are 1 's. The value of the sum is 0, so the memory
location for the first character on the display is the first location in
the display page, as you might expect.

Horizontal bits HO, Hl, and H2 and sum bits SO, Sl, and S2 make up
the transformed horizontal address (AO through A6 in Table 7-12).
As the horizontal co~nt increases from 24 to 63, the value of the sum
(S3 S2 Sl SO) increases from 0 to 4 and the transformed address goes
from 0 to 39, relative to the beginning of the display page.

The low-order three bits of the vertical row counter are VO, Vl, and
V2. These bits control address bits A7, A8, and A9, as shown in
Table 7-12, so that rows 0 through 7 start on 127-byte boundaries.
When the vertical row counter reaches 8, then VO, Vl, and V2 are 0
again, and V3 changes to 1. If you do the addition in Table 7-11 with
H equal to 24 (the horizontal count for the first column displayed)
and V equal to 8, the sum is 5 and the horizontal address is 40: the
first character in row 8 is stored in the memory location 40 bytes
from the beginning of the display page.

Figure 7-12 shows how groups of 3 40-character rows are stored in
blocks of 120 contiguous bytes starting on 127-byte address ·
boundaries. This diagram is another way of describing the display
mapping shown in Figure 2-6. Notice that the 3 rows in each block of
120 bytes are not adjacent on the display.

176 Chapter 7: Hardware Implementation

Table 7-11
Display address transformation

HS'
V3 Carry in

V3 H4 H3Augend
V4 HS' V4 1 Addend

S3 S2 Sl SO Sum

$400

$480

$500

$580

$600

$680

$700

$780

1-----------128 Bytes---------~

-40 Bytes-1-40 Bytes-1-40 Bytes-I-!+.
Bytes

row 0 row 8 row 16 .
row 1 row 9 row 17 .
row 2 row 10 row 18 .
row 3 row 11 row 19 •

row 4 row 12 row 20 •

row 5 row 13 row 21 .
row 6 row 14 row 22 .
row 7 row 15 row 23 .

Figure 7-12
40-column text display memory (memory locations marked with
an asterisk • are reserved for use by peripheral 1/0 firmware:
refer to the section ·peripheral-Card RAM Space· in Chapter 6)

Table 7-12 shows how the signals from the video counters are
assigned to the address lines. HO, Hl, and H2 are horizontal-count
bits, and VO, Vl, and V2 are vertical-count bits. SO, Sl, S2 and S3
are the folded address bits described above. Address bits marked
with an asterisk(•) are different for different modes: see Table 7-13
and the four subsections under "Video Display Modes."

Table 7-12
Display memory addressing

Memory Display Memory Display
address address address address
bit bit bit bit

AO HO AS Vl
Al Hl A9 V2
A2 HZ AlO
A3 so All
A4 Sl A12 •
A5 S2 A13
A6 S3 A14 •
A7 VO A15 GND

• For these address bits, see text and
Table 7-13.

The video display 177

Table 7-13
Memory address bits for display modes

Display modes

Address Text and · High resolution and
bit low resolution double high resolution

AlO 80STORE+PAGE2' VA
All 80STORE'.PAGE2 VB
Al2 0 vc
Al3 0 80STORE+PAGE2'
Al4 0 80STOREv'.PAGE2

Note: Period (.) means logical AND; prime (') means
logical NOT.

Video display modes
The different display modes all use the address-mapping scheme
described in the preceding section, but they use different-sized
memory areas in different locations. The next four sections
describe the addressing schemes and the methods of generating the
actual video signals for the different display modes.

Text displays

The text and low-resolution graphics pages begin at memory
locations $0400 and $0800. Table 7-13 shows how the display-mode
signals control the address bits to produce these addresses. Address
bits AlO and All are controlled by the settings of PG2 and
80STORE, which are set by the display-page and 80-column-video
soft switches. Address bits Al2, Al3, and Al4 are set to 0. Notice
thar80STORE active inhibits PG2: there is only one display page in
80-column mode.

The bit patterns used for generating the different characters are
stored in a 32K ROM. The low-order six bits of each data byte reach
the character generator ROM directly, via the video data bus
VIDO-VID5. The two high-order bits are modified by the IOU to
select between the primary and alternate character sets and are sent
to the character generator ROM on lines RA9 and RAlO.

178 Chapter 7: Hardware Implementation

The data for each row of characters are read eight times, once for
each of the eight lines of dots making up the row of characters. The
data bits are sent to the character generator ROM along with VA,
VB, and VC, the low-order bits from the vertical counter. For each
character being displayed, the character generator ROM puts out
one of eight stored bit patterns selected by the three-bit number
made up of VA, VB, and VC.

The bit patterns from the character generator ROM are loaded into
the 74166 parallel-to-serial shift register and output as a serial bit
stream that goes to the video output circuit. The shift register is
controlled by signals named LOPS' (for load parallel-to-serial
shifter) and VID7M (for video 7 MHz). In 40-column mode, LOPS'
strobes the output of the character generator ROM into the shift
register once each microsecond, and bits are sent to the screen at a
7 MHz rate.

The addressing for the 80-column display is exactly the same as for
the 40-column display: the 40 columns of display memory on the
80-column card are addressed in parallel with the 40 columns in
main memory. The data from these two memories reach the video
data bus Oines VIDO-VI07) via separate 74LS374 three-state buffers.
These buffers are loaded simultaneously, but their outputs are sent
to the character generator ROM alternately by 00 and 01. In 80-
column mode, LOPS' loads data from the character generator ROM
into the shift register twice during each microsecond, once during
00 and once during 01, and bits are sent to the screen at a 14 MHz
rate. Figures 7-13a and 7-13b show the video timing signals.

The video display 179

14M

7M

~~ I
Cf> CPU Phase ~

I I
</>l _J Video Phase I I

J I DATA BUS x==x
l

VIDEO LATCH x ______ x
LOPS' and ENSO'

VIDEO BUS Into CHARGEN

OUTPUT BUS Into SPI (Shift Register)

SPI Serial Output (VID7M and l 4M)

Figure 7-13a
7 MHz video timing signals

I
l LJ

l x_____,,,l ___ x
X--.,.-__,...____,~.,--...,.....-.....,...._~
l

180 Chapter 7: Hardware Implementation

14M

<PO -,I ~------.<9 . J' CPU Phase _ -I _ __.I I __ ___.

D::A~S Vidoo~._I ____ , ~-------'

VIDEO LATCH)(..__~~~~D~o~~~~~ ><JL
i

ALTERNATE BUS~

! l
><~~~~-A~L~T0~~~~~

I
~
I

80 LATCH

LOPS'
(ENSO' Always On)

VIDEO BUS Into CHARGEN

OUTPUT BUS Into SP! (Shift Register)

SP! Serial Output (14M Clock)

Figure 7-13b
14 MHz video timing signals

I x_-"---J
LI I LI
i i

Do x ALT0 XQL

! !
>< Do x ALT0

Low-resolution display

In the graphics modes, VA and VB are not used by the character
generator, so the IOU uses lines SEGA and SEGB to transmit HO and
HIRES', as shown in Table 7-14.

Table 7-14
Character-generator control signals

Display mode SEGA SEG B SEGC
Text VA VB VC
Graphics HO HIRES' VC

The video display 181

The low-resolution graphics display uses VC to divide the eight
display lines corresponding to a row of characters into two groups
of four lines each. Each row of data bytes is addressed eight times,
the same as in text mode, but each byte is interpreted as two
nibbles. Each nibble selects one of 16 colors. During the upper four
of the eight display lines, VC is low and the low-order nibble
determines the color. During the lower four display lines, VC is
high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit patterns
for characters are produced in text mode. The 74166 parallel-to
serial shift register converts the bit patterns to a serial bit stream for
the video circuits.

The video signal generated by the Apple Ile includes a short burst of
3.58 MHz signal that is used by an NTSC color monitor or color 1V
set to generate a reference 3.58 MHz color signal. The Apple Ile's
video signal produces color by interacting with this 3.58 MHz signal
inside the monitor or 1V set. Different bit patterns produce
different colors by changing the duty cycles and delays of the bit
stream relative to the 3.58 MHz color signal. To produce the small
delays required for so many different colors, the shift register runs
at 14 MHz and shifts out 14 bits during each cycle of the 1 MHz data
clock. To generate a stream of fourteen bits from each eight-bit
pattern read from the ROM, the output of the shift register is
connected back to the register's serial input to repeat the same eight
bits; the last two bits are ignored the second time around.

Each bit pattern is output for the same amount of time as a
character: 0.98 microseconds. Because that is exactly enough time
for three and a half cycles of the 3.58 MHz color signal, the phase
relationship between the bit patterns and the signal changes by a
half cycle for each successive pattern. To compensate for this, the
character generator ROM puts out one of two different bit patterns
for each nibble, depending on the state of HO, the low-order bit of
the horizontal counter.

182 Chapter 7: Hardware Implementation

High-resolution display

The high-resolution graphics pages begin at memory locations
$2000 and $4000 (decimal 8192 and 16384). These page addresses
are selected by address bits A13 and A14. In high-resolution mode,
these address bits are controlled by PG2 and 80STORE, the signals
controlled by the display-page (PAGE2) and 80-column-video
(80COL) soft switches. As in text mode, 80STORE inhibits
addressing of the second page because there is only one page of 80-
column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored
in blocks like the one shown in Figure 7-12, but there are eight of
these blocks. As Tables 7-12 and 7-13 show, vertical counts VA, VB,
and VC are used for address bits AlO, Al 1, and A12, which address
eight blocks of 1024 bytes each. Remember that in the display, VA,
VB, and VC count adjacent horizontal lines in groups of eight. This
addressing scheme maps each of those lines into a different 1024-
byte block. It might help to think of it as a kind of eight-way
multiplexer: it's as if eight text displays were combined to produce a
single high-resolution display, with each text display providing one
line of dots in tum, instead of a row of characters.

The high-resolution bit patterns are produced by the character
generator ROM. In this mode, the bit patterns simply reproduce the
eight bits of display data. The low-order six bits of data reach the
ROM via the video data bus VIDO-VID5. The IOU sends the other
two data bits to the ROM via RA9 and RAIO.

The high-resolution colors described in Chapter 2 are produced by
the interaction between the video signal the bit patterns generate
and the 3.58 MHz color signal generated inside the monitor or TV
set. The high-resolution bit patterns are always shifted out at 7 MHz,
so each dot corresponds to a half-cycle of the 3. 58 MHz color
signal. Any part of the video signal that produces a single white dot
between two black dots, or vice versa, is effectively a short burst of
3.58 MHz and is therefore displayed as color. In other words, a bit
pattern consisting of alternating l's and O's gets displayed as a line
of color. The high-resolution graphics subroutines produce the
appropriate bit patterns by masking the data bits with alternating l's
and O's.

The video display 183

To produce different colors, the bit patterns must have different
phase relationships to the 3.58 MHz color signal. If alternating l's
and O's produce a certain color, say green, then reversing the
pattern to O's and l's will produce the complementary color,
purple. As in the low-resolution mode, each bit pattern
corresponds to three and a half cycles of the color signal, so the
phase relationship between the data bits and the color signal
changes by a half cycle for each successive byte of data. Here,
however, the bit patterns produced by the hardware are the same
for adjacent bytes; the color compensation is performed by the
high-resolution software, which uses different color masks for data
being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3.58 MHz color signal. In high-resolution
mode, the Apple Ile produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on the
high-order bit of the data byte being displayed. (The high-order bit
doesn't actualiy get displayed as a dot, because at 7 MHz there is
only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift
register, high-order data bit 07 is also sent to the PAL device. If 07
is off, the PAL device transmits shift-register timing signals LOPS'
and VID7M normally. If 07 is on, the PAL device delays LOPS' and
VID7M by 70 nanoseconds, the time corresponding to half a dot.
The bit pattern that formerly produced green now produces orange;
the pattern for purple now produces blue.

•> A note about ttmtng: For 80-column text, the shift register is
clocked at twice normal speed. When 80-column text is . used
with graphics in mixed mode, the PAL device controls shift
register timing signals LOPS' and VID7M so that the graphics
portion of the display works correctly even when the text
window is in 80-column mode.

Double high-resolution display

Double high-resolution graphics mode displays two bytes in the
time normally required for one, but uses high-resolution graphics
Page 1 in both main and auxiliary memory instead of text or low
resolution Page 1.

•) Note: There is a second pair of pages, high-resolution Page 2,
which can be used to display a second double high-resolution
page.

184 Chapter 7: Hardware Implementation

Double high-resolution graphics mode displays each pair of data
bytes as 14 adjacent dots, seven from each byte. The high-order bit
(color-select bit) of each byte is ignored. The auxiliary-memory
byte is displayed first, so data from auxiliary memory appears in
columns 0-6, 14-20, and so on, up to columns 547-552. Data from
main memory appears in columns 7-13, 21-27, and so on, up to
553-559.

As in 00-column text, there are twice as many dots across the
display screen, so the dots are only half as wide. On a TV set or low
baiidwidth monitor Oess than 14 MHz), single dots will be dimmer
than normal.

<• Note: Except for some expensive RGB-type monitors, any
video monitor with a bandwidth as high as 14 MHz will be a
monochrome monitor. Monochrome means one color: a
monochrome video monitor can have a screen color of white,
green, orange, or any other single color.

The main memory and auxiliary memory are connected to the
address bus in parallel, so both are activated during the display
cycle. The rising edge of 00 clocks a byte of main memory data into
the video latch, and a byte of auxiliary memory data into the 80
latch.

01 enables output from the (auxiliary) 80 latch, and 00 enables
output from the (main) video latch. Output from both latches goes
to CHARGEN, where GR and SEGB' select high-resolution graphics.
LDPS operates at 2 MHz in this mode, alternately gating the
auxiliary byte and main byte into the parallel-to-serial shift register.
VID7M is active (kept true) for double high-resolution display
mode, so when it is ANDed with 14M, the result is still 14M. The
14M serial clock signal gate shift register then outputs to VID, the
video display hybrid circuit, for output to the display device.

Video output signals
The stream of video data generated by the display circuits described
above goes to a linear summing circuit built around transistor Ql
where it is mixed with the sync signals and the color burst. Resistors
R3, R5, R7, RIO, R13, and R15 adjust the signals to the proper
amplitudes, and a tank circuit (L3 and C32) resonant at 3.58 MHz
conditions the color burst.

Video output signals 185

The resulting video signal is an NTSC-compatible composite-video
signal that can be displayed on a standard video monitor. The
signal is similar to the EIA (Electronic Industries Association)
standard positive composite video (see Table 7-15). This signal is
available in two places in the Apple Ile:

o At the phono jack on the back of the Apple Ile. The sleeve of this
jack is connected to ground and the tip is connected to the video
output through a resistor network that attenuates it to about 1 volt
and matches its impedance to 75 ohms.

o At the internal video connector on the Apple Ile circuit board
near the RCA jack, J13 in Figure 7-15c. It is made up of four
Molex-type pins, 0.25 inches tall, on 0.10-inch centers. This
connector carries the video signal, ground, and two power
supplies, as shown in Table 7-15.

Table 7-15
Internal video connector slgnals

Pin Signal Description

1 GROUND System common ground.

2 VIDEO NTSC-compatible positive composite video.
White level is about 2.0 volts, black level is
about 0.75 volts, and sync level is 0.0 volts.
This output is not protected against short
circuits.

3 -5V -5 volt power supply.

4 +12V +12 volt power supply.

Built-in 1/0 circuits
The use of the Apple Ile's built-in I/0 features is described in
Chapter 2. This section describes the hardware implementation of
all of those features except the video display described in the
previous sections.

The IOU (Input/Output Unit) directly generates the output signals
for the speaker, the cassette interface, and the annunciators. The
other 1/0 features are handled by smaller ICs, as described later in
this section.

186 Chapter 7: Hardware Implementation

The addresses of the built-in 1/0 features are described in Chapter 2
and listed in Tables 2-1, 2-10, and 2-11. All of the built-in 1/0
features except the displays use memory locations between $COOO
and $C070 (decimal 49152 and 49264). The 1/0 address decoding is
performed by three ICs: a 7415138, a 7415154, and a 7415251.

The 7415138 decodes address lines AS, A9, AlO, and All to select
address pages on 256-byte boundaries starting at $COOO (decimal
49152). When it detects addresses between $COOO and $COFF, it
enables the IOU and the 7415154. The 7415154 in turn decodes
address lines A4, A5, A6, and A7 to select 16-byte address areas
between $COOO and $COFF. Addresses between $Co60 and $C06F
enable the 7415251 that multiplexes the hand control switches and
paddles; addresses between $C070 and $C07F reset the NE558
quadruple timer that interfaces to the hand controls, as described
later in the section "Game I/0 Signals."

The keyboard
The Apple Ile's keyboard is a matrix of keyswitches connected to an
AY-36oO-type keyboard decoder via a ribbon cable and a 26-pin
connector. The AY-3600 scans the array of keys over and over to
detect any keys pressed. The scanning rate is set by the external
resistor-capacitor network made up of C70 and R32. The debounce
time is also set externally, by C71.

The AY-36oO's outputs include five bits of key code plus separate
lines for Control, Shift, any-key-down, and keyboard strobe. The
any-key-down and keyboard-strobe lines are connected to the IOU,
which addresses them as soft switches. The key-code lines, along
with Control and Shift, are inputs to a separate 2316 ROM. The ROM
translates them to the character codes that are enabled onto the
data bus by signals named KBD' and ENKBD' . The KBD' signal is
enabled by the MMU whenever a program reads location $COOO, as
described in the section "Reading the Keyboard" in Chapter 2.

Table 7-16
Keyboard connector signals

Pin Signal Description

1,2,4,6,8, 10, YO-Y9 Y-direction key-matrix connections
23,25, 12,22

3 +5 +5 volt supply

5,7,9,15 n.c.

11 LC NTL' Line from Control key

Built-in 1/0 circuits 187

Table 7-16 (continued)
Keyboard connector signals

Pin Signal

13 GND

14, 18, 16,20, XO-X7
21,19,26,17

24 LSHFT'

Connecting a keypad

Description

System common ground

X-direction key-matrix connections

Line from Shift key

There is a smaller connector wired in parallel with the keyboard
connector in the original and the enhanced Ile. You can connect a
ten-key numeric pad to the Apple Ile via this connector.

Extended keyboard lie The extended keyboard lie has a numeric keypad built Into the
keyboard.

Table 7-17
Keypad connector signals

Pin Signal Description

1,2,5,3,4,6 YO-YS Y-direction key-matrix connections
7 n.c.
9,11,10,8 X4-X7 X-direction key-matrix connections

Cassette 1/0
The two miniature phone jacks on the back of the Apple Ile are used
to connect an audio cassette recorder for saving programs. The
output signal to the cassette recorder comes from a pin on the IOU
via resistor network R6 and R9, which attenuates the signal to a level
appropriate for the recorder's microphone input. Input from the
recorder is amplified and conditioned by a type 741 operational
amplifier and sent to one of the inputs of the 74LS251 input
multiplexer.

The signal specifications for cassette 1/0 are

o Input: 1 volt (nominal) from recorder earphone or monitor
output. Input impedance is 12K ohms.

o Output: 25 millivolts to recorder microphone input. Output
impedance is 100 ohms.

188 Chapter 7: Hardware Implementation

Table 7-18
Speaker connector signals

Pin Signal

1 SPKR

2 +5

Description

Speaker signal.
1his line will
deliver about
0.5 watt into an
8-ohm speaker.

+5V power
supply. Note
that the speaker
is not connected
to system ground.

The speaker
The Apple He's built-in loudspeaker is controlled by a single bit of
output from the IOU (Input Output Unit). The signal from the IOU is
AC coupled to Q5, an MPSA13 Darlington transistor amplifier. The
speaker connector is a Molex KKlOO connector,]18 in Figure 7-15b,
with two square pins 0.25 inches tall and on 0.10-inch centers.

A light-emitting diode is connected in parallel across the speaker
pins such that, when the speaker is not connected, the diode glows
whenever the speaker signal is on. 1his diode is used as a diagnostic
indicator during assembly and testing of the Apple Ile.

Game 1/0 signals
Several 1/0 signals that are individually controlled via soft switches
are collectively referred to as the game signals. Even though they
are normally used for hand controls, these signals can be used for
other simple I/0 applications. There are five output signals: the
four annunciators, numbered AO through A3, and one strobe
output. There are three one-bit inputs, called switches and
numbered SWO through SW2, and four analog inputs, called
paddles and numbered PDLO through PDL3.

The annunciator outputs are driven directly by the IOU (Input
Output Unit). These outputs can drive one TTI. (transistor
transistor logic) load each; for heavier loads, you must use a
transistor or a TTL buffer on these outputs. These signals are only
available on the 16-pin internal connector. (See Table 7-19.)

The strobe output is a pulse transmitted any time a program reads or
writes to location $C040. The strobe pin is connected to one output
of the 74LS154 address decoder. 1his TTL signal is normally high; it
goes low during 0() of the instruction cycle that addresses location
$C040. This signal is only available on the 16-pin internal
connector. (See Table 7-19.)

The game inputs are multiplexed along with the cassette input signal
by a 74LS251 eight-input multiplexer enabled by the C06X' signal
from the 74LS154 l/O address decoder. Depending on the low
order address, the appropriate game input is connected to bit 7 of
the data bus.

Built-in 1/0 circuits 189

The switch inputs are standard low-power Schottky TIT. inputs. To
use them, connect each one to 560-ohm pull-down resistors
connected to the ground and through single-pole, momentary
contact pushbutton switches to the +5 volt supply.

The hand-control inputs are connected to the timing inputs of an
NE558 quadruple 555-type analog timer. Addressing $C07X sends a
signal from the 7415154 that resets all four timers and causes their
outputs to go to 1 (high). A variable resistance of up to 150K ohms
connected between one of these inputs and the +5V supply controls
the charging time of one of four 0.022-microfarad capacitors.
When the voltage on the capacitor passes a certain threshold, the
output of the NE558 changes back to 0 Oow). Programs can
determine the setting of a variable resisto~ by resetting the timers
and then counting time until the selected timer-input changes from
high to low. The resulting count is proportional to the resistance.

The game 1/0 signals are all available on a 16-pin DIP socket
labeled GAME 1/0 on the main circuit board inside the case. The
switches and the paddles are also available on a D-type miniature
connector on the back of the Apple Ile; see J8 and J15 in
Figure 7-15d (Figure 7-16d for the extended keyboard Ile).

Table 7·19
Game 1/0 connector signals

Internal
connector
pin

1

2,3,4

5

Back-panel
connector
pin Signal

2 +5V

7,1,6 PBO-PB2

STROBE'

Description

+5V power supply. Total
current drain from this
pin must not exceed
lOOmA.

Switch inputs. These are
standard 74LS inputs.

Strobe output. This line
goes low during 00 of a
read or write instruction
to location $C040.

6,10,
7,11

5,8,4,9 PDLO-PDL3 Hand control inputs.

190 Chapter 7: Hardware Implementation

Each of these should
be connected. to a
150K-ohm variable
resistor connected to
+5V.

Chapter 6 describes the
standards for programming
peripheral cards for the Apple lie.

Table 7·19 (continued)
Game 1/0 connector signals

Internal Back-panel
connector connector
pin pin Signal

8 3 GND

15,14, ANO-AN3
13,12

9,16 n.c.

Expanding the Apple lie

Description

System ground.

Annunciators. These are
standard 74LS TfL
outputs and must be
buffered to drive other
than TfL inputs.

Nothing is connected to
these pins.

The main circuit board of the Apple Ile has eight empty card
connectors or slots on it. These slots make it possible to add
features to the Apple Ile by plugging in peripheral cards with
additional hardware. This section describes the hardware that
supports them, including all of the signals available on the
expansion slots.

The expansion slots

The seven connectors lined up across the back part of the
Apple Ile's main circuit card are the expansion slots, also called
peripheral slots or simply slots, numbered from 1 to 7. They are 50-
pin PC-card edge connectors with pins on 0.10-inch centers. A PC
card plugged into one of these connectors has access to all of the
signals necessary to perform input and output and to execute
programs in RAM or ROM on the card. These signals are described
briefly in Table 7-20. The following paragraphs describe the signals
in general and mention a few points that are often overlooked. For
further details, refer to the schematic diagram in Figures 7-15a-d
(Figure 7-16a-<l for the extended keyboard Ile).

Expanding the Apple lie 191

The peripheral address bus

The microprocessor's address bus is buffered by two 74LS244 octal
three-state buffers. These buffers, along with a buffer in the
microprocessor's R/W' line, are enabled by a signal derived from
the DMA' daisy chain on the expansion slots. Pulling the peripheral
line DMA' low disables the address and R/W' buffers so that
peripheral DMA circuitry can control the address bus. The DMA
address and R/W' signals supplied by a peripheral card must be
stable all during 00 of the instruction cycle, as shown in
Figure 7-14.

Another signal tha~ can be used to disable normal operation of the
Apple Ile is INH' . Pulling INH' low disables all of the memory in the
Apple Ile except the part in the 1/0 space from $COOO to $CFFF. A
peripheral card that uses either INH' or DMA' must observe proper
timing; in order to disable RAM and ROM cleanly, the disabling
signal must be stable all during 00 of the instruction cycle (refer to
the timing diagram in Figure 7-14).

The peripheral devices should use 1/0 SELECT' and DEVICE
SELECT' as enables. Most peripheral ICs require their enable
signals to be present for a certain length of time before data is
strobed into or out of the device. Remember that 1/0 SELECT' and
DEVICE SELECT' are only asserted during 00 high.

The peripheral data bus

The Apple Ile has two versions of the microprocessor data bus:
an internal bus, MDO-MD7, connected directly to the
microprocessor; and an external bus, DO-D7, driven by a 74LS245
octal bidirectional bus buffer. The 65C02 is fabricated with MOS
circuitry, so it can drive capacitive loads of up to about 130 pF. If
peripheral cards are installed in all seven slots, the loading on the
data bus can be as high as 500 pF, so the 74LS245 drives the data bus
for the peripheral cards. The same argument applies if you use MOS
devices on peripheral cards: they don't have enough drive for the
fully loaded bus, so you should add buffers.

192 Chapter 7: Hardware Implementation

Loading and driving rules

Table 7-20 shows the drive requirements and loading limits for each
pin on the expansion slots. The address bus, the data bus, and the
R/W' line should be driven by three-state buffers. Remember that
there is considerable distributed capacitance on these buses and
that you should plan on tolerating the added load of up to six
additional peripheral cards. MOS devices such as PIAs and ACIAs
cannot switch such heavy capacitive loads. Connecting such
devices directly to the bus will lead to possible timing and level
errors .

Interrupt and OMA daisy chains

The interrupt requests (IRQ' and NMI') and the direct-memory
access CDMA') signal are available at all seven expansion slots. A
peripheral card requests an interrupt or a DMA transfer by pulling
the appropriate output line low (active). If two peripheral cards
request an interrupt or a OMA transfer at the same time, they will
contend for the data and address busses. To prevent this, two pairs
of pins on each connector are wired as a priority daisy chain. The
daisy-chain pins for interrupts are INT IN and INT OUT, and the
pins for DMA are DMA IN and DMA OUT, as shown for Jl-J7 in
Figure 7-lSd (Figure 7-16d for the extended keyboard Ile).

Each daisy chain works like this: the output from each connector
goes to the input of the next higher numbered one. For these signals
to be useful for cards in lower numbered connectors, all of the
higher numbered connectors must have cards in them, and all of
those cards must connect DMA IN to DMA OUT and INT IN to INT
OUT. Whenever a peripheral card uses pin DMA', it must do so
only if its OMA IN line is active, and it must disable its DMA OUT
line while it is using DMA'. The INT IN and INT OUT lines must be
used the same way: enable the card's interrupt circuits with INT IN,
and disable INT OUT whenever IRQ' or NMI' is being used.

Expanding the Apple lie 193

14M

7M

Q3--..... I

I
<f>O --,

1--- CPU Phase

<J>I I Video Phase

Address -1
{

AO-Al5, R/W'}
!NH', OMA'

l-140 ns (Max.) 30 ns (Min.)-l 1-

Peripheral Select

{

1/0 SELECT' }
DEVICE SELECT
1/0 STROBE'

Figure 7-14
Peripheral-signal timing

Table 7-20
Expansion slot signals

Pin Signal

1 1/0 SELECT

2-17 AO-AlS

18

194 Chapter 7: Hardware Implementation

Description

Normally high; goes low during 00 when
the 6SC02 addresses location $CnXX,
where n is the connector number. This
line can drive 10 LS TTL loads.•

Three-state address bus. The address
becomes valid during 01 and remains
valid during 00. Each address line can
drive S LS TTL loads.•

Three-state read/write line. Valid at the
same time as the address bus; high
during a read cycle, low during a write
cycle. It can drive 2 LS TTL loads.•

Table 7-20 (continued)
Expansion slot signals

Pin Slgnal Description

19 SYNC' Composite horizontal and vertical
sync,on expansion slot 7 only. This line
can drive 2 LS TIL loads.•

20 1/0 STROBE' Normally high; goes low during 00 when
the 65C02 addresses a location between
$C800 and $CFFF. This line can drive
4 LS TTL loads.

21 RDY Input to the 65C02. Pulling this line low
during 01 halts the 65C02 with the
address bus holding the address of the
location currently being fetched. This
line has a 3300 ohm pullup resistor to
+5V.

22 DMA' Input to the address bus buffers. Pulling
this line low during 01 disconnects the
65C02 from the address bus. This line
has a 3300 ohm pullup resistor to +5V.

23 INT OUT Interrupt priority daisy-chain output.
Usually connected to pin 28 ONT IN).t

24 DMA OUT DMA priority daisy-chain output.
Usually connected to pin 22 CDMA IN).

25 +5V +5-volt power supply. A total of 500mA
is available for all peripheral cards.

26 GND System common ground.

27 DMAIN DMA priority daisy-chain input. Usually
connected to pin 24 CDMA OUT).

28 INT IN Interrupt priority daisy-chain input.
Usually connected to pin 23 (INT OUT).

29 NMI' Nonmaskable interrupt to 65C02.
Pulling this line low starts an interrupt
cycle with the interrupt-handling
routine at location $03FB. This line has
a 3300 ohm pullup resistor to +5V.

Expanding the Apple lie 195

Table 7·20 (continued)
Expansion slot signals

Pin Signal DescrlpHon

30 IRQ' Interrupt request to 65C02. Pulling this
line low starts an interrupt cycle only if
the interrupt-disable Q) flag in the
65C02 is not set. Uses the interrupt-
handling routine at location $03FE. This
line has a 3300 ohm pullup resistor to
+5V.

31 RES' Pulling this line low initiates a reset
routine, as described in Chapter 4.

32 INH' Pulling this line low during 01 inhibits
(disables) the memory on the main
circuit board. This line has a 3300 ohm
pullup resistor to +5V.

33 -12V -12 volt power supply. A total of 200mA
is available for all peripheral cards.

34 -5V -5 volt power supply. A total of 200mA is
available for all peripheral cards.

35 3.58M 3.58 MHz color reference signal, on slot
7 only. This line can drive 2 LS rn
loads.•

36 7M System 7 MHz clock. This line can drive
2 LS TIL loads.•

37 Q3 System 2 MHz asymmetrical clock. This
line can drive 2 LS rn loads.•

38 01 65C02 phase 1 clock. This line can drive
2 LS Tn loads.•

39 µPSYNC The 6SC02 signals an operand fetch by
driving this line high during the first
read cycle of each instruction.

40 00 6SC02 phase 0 clock. This line can drive
2 LS rn loads.•

41 DEVICE Normally high; goes low during 00 when
SELECT' the 65C02 addresses location $COnX,

where n is the connector number plus 8.
This line can drive 10 LS Tn loads.•

196 Chapter 7: Hardware Implementation

Table 7-20 (continued)
Expansion slot signals

Pin Signal

42-49 DO-D7

50 +12V

Description

Three-state buffered bi-directional data
bus. Data becomes valid during 00 high
and remains valid until 00 goes low.
Each data line can drive one LS TI1.
load.•

+ 12 volt power supply. A total of 250mA
is available for all peripheral cards.

• Loading limits are for each card.
t On slot 7 only, this pin can be connected to the graphics-mode signal

GR: see text for details.

The auxiliary slot

The large connector at the left side of the Apple Ile's main circuit
card is the auxiliary slot. It is a 6o-pin PC-card edge connector with
pins on 0.10-inch centers. A PC card plugged into this connector
has access to all of the signals used in producing the video display.
These signals are described briefly in Table 7-21. For further
details, refer to the schematic diagram in Figure 7-15a-d
(Figure 7-16a-d for the extended keyboard Ile).

Many of the internal signals that are not available on the expansion
slots are on the auxiliary slot By using both kinds of connectors,
manufacturing and repair personnel can gain access to most of the
signals needed for diagnosing problems in the Apple Ile.

Important In the extended keyboard lie, the auxiliary slot Is already
occupied by the Extended 80-Column Text Card.

80-column display signals

The additional memory needed for producing an 80-column text
display is on the 80-column text card, along with the buffers that
transfer the data to the video data bus, as described earlier in this
chapter in the section "Text Displays." The signals that control the
80-column text data include the system clocks 00 and 01, the
multiplexed RAM address RAO-RA7, the RAM address-strobe
signals PRAS' and PCAS', and the auxiliary-RAM enable signals,
ENSO' and R/W80.

Expanding the Apple lie 197

The ENSO' enable signal is controlled by the 80STORE soft switch
described in Chapter 4. Data is sent to the auxiliary memory via the
internal data bus MDO-MD7; the data is transferred to the video
generator via the video data bus VIDO-VID7.

Table 7-21
Auxiliary slot signals

Pin

1

2

3

4

5

6

7

8

51,10,49,
48,13,14,
46,9

11,12

44,43,40,
39,21,20,
17,16

Signal

3.58M

VID7M

SYNC'

PRAS'

vc

C07X'

WNDW'

SEGA

RAO-RA7

ROMENl,
ROMEN2

MDO-MD7

198 Chapter 7: Hardware Implementation

Description

3.58 MHz video color reference
signal. This line can drive two LS TTL
loads.

Clocks the video dots out of the 74166
parallel-to-serial shift register. This
line can drive two LS TTL loads.

Video horizontal and vertical sync
signal. This line can drive two LS TTL
loads.

Multiplexed RAM row-address
strobe. This line can drive two LS TTL
loads.

Third low-order vertical-counter bit.
This line can drive two LS TTL loads.

Hand-control reset signal. This line
can drive two LS TTL loads.

Video nonblank window. This line
can drive two LS TTL loads.

First low-order vertical counter bit.
This line can drive two LS TTL loads.

Multiplexed RAM-address bus. This
line can drive two LS TTL loads.

Enable signals for the ROMs on main
circuit board.

Internal (unbuffered) data bus. This
line can drive two LS TTL loads.

Table 7-21 (continued)
Auxiliary slot signals

Pin Signal Description

45,42,41, VIDO-VID7 Video data bus. This three-state bus
38,22, 19, carries video data to the character
18,15 generator.

23 00 65C02 clock phase 0. This line can
drive two LS TI1. loads.

24 CLRGAT' Color-burst gating signal. This line
can drive two LS TI1. loads.

25 80VID' Enables 80-column display timing.
This line can drive two LS TI1. loads.

26 ENSO' Enable for auxiliary RAM. This line
can drive two LS TTI. loads.

27 ALTVID' Alternative video output to the video
summing amplifier.

28 SERO UT' Video serial output from 74166
parallel-to-serial shift register.

29 ENVID' Normally low; driving this line high
disables the character generator such
that the video dots from the shift
register are all high (white), and
alternative video can be sent out via
ALTVID. This line has a 1000 ohm
pulldown resistor to ground.

30 +5 +5 volt power supply.

31 GND System common ground.

32 14M 14.3 MHz master clock signal. This
line can drive two LS TI1. loads.

33 PCAS' Multiplexed column-address strobe.
This line can drive two LS TI1. loads.

34 LDPS' Strobe to video parallel-to-serial shift
register. This signal goes low to load
the contents of the video data bus
into the shift register. This line can
drive two LS TI1. loads.

Expanding the Apple lie 199

Table 7-21 (continued)
Auxiliary slot signals

Pin Signal Description

35 R/W80 Read/write signal for RAM on the
card in this slot. This line can drive
two LS Tn loads.

36 01 65C02 clock phase 1. This line can
drive two LS Tn loads.

37 CASEN' Column-address enable. This signal
is disabled (held high) during
accesses to memory on the card in
this slot.This line can drive two
LS Tn loads.

47 HO Low-order horizontal byte
counter. This line can drive two LS
Tn loads.

50 AN3 Output of annunciator number 3.This
line · can drive two LS Tn loads.

52 R/W' 65C02 read/write signal. This line can
drive two LS Tn loads.

53 Q3 2 MHz asymmetrical clock. This line
can drive two LS Tn loads.

54 SEGB Second low-order vertical-counter
bit. This line can drive two LS Tn
loads.

55 FRCTXT' Normally high; pulling this line low
enables 14MHz video output even
when GR is active.

56,57 RA9',RA10' Character-generator control signals
from the IOU. This line can drive two
LS TTL loads.

58 GR Graphics-mode enable signal. This
line can drive two LS Tn loads.

59 7M 7 MHz timing signal. This line can
drive two LS Tn loads.

60 ENTMG' Normally low; pulling this line high
disables the master timing from the
PAL device. This line has a 1000 ohm
pulldown resistor to ground.

200 Chapter 7: Hardware Implementation

·~ ,,,.
;d

~-··"=~~~::: d:::!''
-~ G~:+---~~

'-----

t:
0
0.

E
Q
O>
0

=a
0

:;::::
0
E
Q)

.i::.
0
<I)

~
1J
Q)
0 c
0

.i::.
c
Q)

C1J
ll>C
"";"O ,...,_
!~
:::I 0)
ore
u:o

201

"' 2 "'~
~" J~

~J[l·7J2.(4)

LSll

, .,cx:u
(,3)31

'""' II ~ ::I • ~· ceu•

J9 w·.. 1 .. , ,... 1"-• osn•·-m
,._. " •• '·. .. l '>: . ~"" ~- ... ~-'j!-~::

r Uf ,,. -r ~-~- - -..~ ¢·· .. ~ . .. ~'!;-··]
.,, •• ·~... "' !"-'<" ·"' -·

- "' "' ,... " -·· . .., . ~"··-·· ~ - ,__,,_,

..................... - . '"' ~~- ~
C.JJIM,J8·1,JI0 · 3 J.WJ OPL ~

1

«>Je-6,JIH ::iwz c_"J/O

59

"' 15 J JI
12 I') (I 4 5

{4J J8·5.Jl5· , POLI T ,J.;.t:t, 13 •• ~ .. .~ ... -Rl3 ~14 ITOI ~AO
........... ~· I w _,,..,..,. • ·- ""' _....... [:: f."' :.: ---- -AZ

4

I ~ I CPI :: I
4
LS25I I\ i:rHi Al~~ 111 I ~~: '

IH TD OC g CP2 I. 15 ~ A3 II

3

DEV'

Rll IO UAIZ~ 8 m 16 12p\!-

........ - JIS-5 C4)

···::.:~.~) -~··~JZ• 41

~J:5• 41
~J4- 'I {4)

~J(fi

(4l Jll·9,Jl5·11 ~ _ 1 1 1 IN TC IZ ll 13 ,oL lT' ••• ·- ,•-- ·-- . • .. ~ 1w~ty1;;"1°'fi ?m" : -- -:~L _Q1 ~·
"-=rJi,iut ~ ':'' i i i ' lo

. r"• .1." - - - --1 , 1.,., l 13>-.fll ~ _ .lut -, 'IK A/WO \ , IO

>-R/Wilf • r Mo1N IJ/Ull

, ·~·· ~ * ·~~ .H· ~.. - r ~- ·"'" • .. ,__, • ·- I =-----"~ .. ~ ,, z ~u~•
1

•

l •l J6-4,JL5 - 7 - POL

~J5-41
~J6·41
~J7- 41

....-JCl -7148
--Jll-7)47

,......JC• -n46 <•>
~J[l-7)45

-J[l- 7144
--J[l -7)43 (4)Jt 35~ rt ~ ~&2 •

2

" 02: "' " ., F - " -~ " " ,., =o. • • • •

J1•·1,J11· 1 re 1 ~f 11 I ., ~ •• ••

1

oo
Jl6·Z,J11-2 YI 11~.. I r ~- A6 a D6 .. ~ '" . " . . ., . .. " '· "~ 0 -. "" ~ T ~ -

Jl6·4, Jl7-8 Y4 Z9 3610 PRO ~ ••
Jl6·6,Jl7· ie Y5 ZI '" ~- "'~'' "' . :; .. .,.. - ' -

-·""")
-· -~Jct-n 42

·---Ro_ ll)
AKO_ {3) ..

...i:1s-fff1

..
Jl7-25 Y7 ~ l!i.: 7 VCC

Jl1-IZ YI 2.
85

9 6 01LL-!!J1LI
Jl1·2Z :ii 25 06 •• U(ll oz~
Jl1·14 XO 87 1 4 A4 2116 03~
J l1 · 18 ~ :: : 3 ~·~~3 •

JIH6 -"<- [!l_ Al 05

14

JIMO • X3 ~ 8Z I

1

I oo:~"°" Jl6·9.Jl1 · Z1~4 J OJ I ·~07tl6
Jl6·11,Jl7·i•.:..a• ~1

osc1r-, _J ,, •. ,._,,,., • .:.a.• -., I !c1• "
Jl6-8,JIM7~ J lz T'

7

''
Jl7-2• .,:i:wF'1* ~ osczn
Jl1· tl ._ CNT Ut 29

]

6 8 2:8 OSC3)
~ EBO NC

• RP2 l!I 31

u'IK I~f l
> MO(QP}

Figure 7-1 Sb

•32 , ...

Original and enhanced lie. schematic diagram, part 2

Rl6
91A
IW

1
(3)~

CRl"JL..~

RPI

":u;79 R)9

CPWR. Ofll) .,
211

•5(

"' 0
v.>

(4)Jirz7
(4)J.,-29

ALTVID•
ENVID•

r--------------------------------------...::"~0[~0,;:-7J!.,Jf(4)
~JQt-Nf4)

RP3 3...31(SIP .. ~. b 'f
I

X3 •+5 I H nRJ RIO -----1 '5• - -- --- " . - -" - ' "' ' ' ., . '" ' ' ' ' • " iilli Ii ",.-----, • • " ~ • "M· : Q ,
I lt" 'H:. --ii• . " '"'% "" "' ,, -.... ,4'.. " \tj:'-J _, • ..., - ---.1,, "" - • ~ l w .. ~Li " ffill '" ~ -~ ~ .. ---.., "• ' " " "" ""- ~. ' . -· ~DI 01 6 VIOZ VIOZ ~ A6 03~ ; 03 OS[~ EpK 0.SK Riii * IOOA L;ijJl3 I] ~. ., - ~· "' • ... • ... I rw; " ~-• .. • ' • ' f- . " •• .• - ;::::»' .. • - • '> "" -\l'· -·.----;;;-; -· ' ' ' -· --- - • '• ., ""i ' ' ---"

1-•• ~ - ,... : .-' " - ~- -·~· .. - ·~· •---c- ... •iOfoi m., n "" • - -~·-··"""' ~~-~ If'., ,, Jlij.. -

"-j' -=• L ._:: ~-• "
:~:: ~:-1 11 I ~=1 : (2)- ICSTAB 3' 344- I:
(2'~ I I I 32 NH t:

W ~5 I~ A S£'8 Jf 4)

.. I'll'/ •-_JIHI (4)

• ~ •-~n~ 34 ~ RAl0~ Jf .. 7(4) - . -· ·~·· ,_ Vl)7 3~ ~ Wll>W t= Jf-7 {4)

z 8fV1D• Jf-Z>(4) ~ ~0 Jlf T 11107 I I : 311 [; " ""
<4> ... -55 FICTXT*

9
I :: •• UC5

• q

IH.n

""'
... , ...

(I) Ol&EN•

R3ll

LS ..
RAS

,n~~~~~~~~~~~~iii~~~~~~~~~~~~~~~~;~ (l)Jf(•l ~ ·-·~ ===----===~~~::::..~:: <2JJIS-13C4)
JIS-12.Jf-5. (4)

lUJ(l-7)31,J(l-7)15 t-U

""' •Afll·~

~~~~$==~~~~~==~~~~~===~~~=E Jf-2(4) 

J~(4) 

(l)J~-33 (4) 

(II Jf-S3.,J[l -7) 37 (4) 

(1)<21.Je-H,J(J-7]38<4> 

(l)(Z)Jf-2l.,J(l-1J 4f (4) ~~--'1.!:..=-=-=-=-=-=-t====9F======t===~~~~~f~~~~E~~~~~~~~~~~~~~~~~ (l)J·-

4141 

J~~~~~~~~~~~~~~~~~~=*=====k=J===J=;~~~~~~ r---~~· .. ~-
• ___ 1, .... W<·=- Jf-3.Z (4) 

,..~-..!.'~· - .,.-1,J7-:55(4) 
Jf-59,.J~ -1] ]6(4) ... 1-

1~ 

Figure 7-1 Sc 
Original and enhanced lie schematic diagram, part 3 



l'V 
0 
J:>. 

Jl6 

NUWUIC PAO 

JZ 

~
• \I 

' 
' I 

JZ9 

PO~~N~:os 

~ 
~ 
~ 
~ 

JIT 

KEY BOARD 

Jl 

~ 
-~ 

JI 

Figure 7-15d 
Original and enhanced lie schematic diagram, part 4 

J • J> 

~ I 

' 
' 

156 -~ 
LI 

-5~-o;c 

L2 
-12~-IZ C 

L6 
•IZ___.......,..._ • IZC 

L4 
•5PC~•.C 

LS .. 

- IZ -· • 5PC •IZ 

GNO GHO 

,,. 
POWER CONNECTOR 

J 6 J7 

~~
., .'I 

' ., 
' 

J8 
0 89 

JIS 

GAME l/O 

X7 .. 



ii' 
; 

ii' 
; N i ;;; t ~~~~ 

! 
.. 

~ 0 
~a! 

. 
~ 

"' ~ ! "'~ ~ JJ "' ~ ! "' ~ ~ • • ~ • 
.----f:E:· ~ ~ ~ 11 ~ ~: B= ~ ~ .,~~ ~'~~ 

L. 0 j t-~-t--1.--+--t-,....,.--t-t--~ 
N • • :I" ~~ :r ~· 0 m :r~ "1= • <0 ~ 

' .lJ=,,.~~~~ ·~·~~~~~ '?' ~ 
I_ I ~ ~ < ~ ~ l 11 ~ ~ '1 ~ ! • ~ ~ ~ ~ ~ I~ 
~l"-1 ~ 8 ~ 

~/.~~1~, "-~Bl~::r::,'::::: ~ 
~ : N' ~ ~ ~ ~ ~ § ~ ~ ~ 

N .., I-• - _ _, 

I• 

: ~ ~ii~~ 

HUI 
205 



t 5lg s I I 

•' I 
I : 

~' 

206 

~,. 

l! * • ~1~;: ~ ~ ~ ;J~ ~ q;;;~ ~ 

~~ r----, 
~ I 
• I 



"' 0 
'-I 

• NOTE.: UHt.ESSOflUlWIU S.PtClf'IU> 

VIO(Q! - 7) -----------------------------------------JQ!(4) ~Jrl-2814) 
(4)Jr$-Z.7 .... . . 10 • 

(2) (4)Jr$-Z.9 [ N'llO• ( ALT CHR ON 'fl[STEAN P•NISH AHO WEST[RH FA(NCJo!) &>fl 1 De 

11<1 

T 1" 0)(3 +5 _.f!_ RP3 3.31( SIP '"1 R7 .--r"+5( --, 
IK UC5 ~C +5C I J 

MOQM'j _ 18 Z4 I LSIJ Z JK i 5 4 

(1J .....iiiiiiiili MOQ! 3~ VIO¢ VIOlf • 5 A! " ti 9 14~ £~1< Rl9 ! J 
~' 4 01 QI 5 VIOi VIOi 4 A4 ~I 1¢. IZ g. ~I( Rl7 ~~3~1 I 

6 VLC2 VID.2 3 11 11 13 - 1 
MOl 

8 
02 Qi!. 9 

vio! VIO! z. AS 02 I ~ os 01~ - l /?'\c 1iti0n }' i:ie ~INTSC 1 6 1 vAt 

(•I 
C• I 
(2) 
(2) 

121 

~03 U03 °3 12 V~4 VI04 I AE 
0

; :: 
1
5 °"' I ~I ~~~3W6 75!1 'T'l~IO:o l _L 

~0\5374Q4 15 VIO" V105 23 A7Uf"4 0 rs 4 03 OS~ 13 RIS RI! !. t " I ~ 
~ 1.106 171~ Q!~ ~::l73lO: IE 3 g~ L~I~ IZ. UBS r.11( 6.6~1< R1i~ ~~ i;ti > 
~g1 ~7~ ~.?763~1 17 2 Diii 502 02 U 5.61< RU JI ! I 

~ s~AQ! ~ ,...ljcp 1~7,f 27j..1Hb( m n .. ~2C 4 JI I I 

~ ~~~ ~ ~ ~ ~k ~~,F - SC S~ ~ : 6 7 I : 

+S 19 22 2~ 6 9 !5 CLRGATE=~C* J Q! -24 (4) I -SC I 

37 a 30 t a . ~f11i;t"1g{4)L - - __ _J 

Vl06 34 : 'I • SP:~ JQ! · 5 {4) 

v101 n 14"" sr<>S- ~~-s4 c4! 
SEi.A JQ!-S 141 .. £> 

RIW• " 2 
COlOC• .. , ... • 

6 R J lt - 5Et, J7-23M ,. " RAl0• Jf-57(4) 
KSTRB " 

..... 
AKO ' 

.,, 
'" UES 

"" 

I ....:. I I I I I I I ... • J.-.... 1 
8 • ;~ • J G-7 t41, J21-21•1 

RO 0:10 Jlti-25(4) " lit--
~ t-
" " " ,. 
" " " 

••• ... . ., .., ... ... ... 
·~11 jcASSET TEOu rl .. 

IHA '=' 

•<Z 1 ~ H;" ..... 
,bm l [ii . AN 
I~ fil • • ., ·~ ·• - ~: ... ~ .. '""" ~ TI1 ••• ~: :;~:: .. ., ., - ... ,, .... 

~ 
R'8 

" 

.---"'•' " ~ []_ "' <2lJ'5·'3(" "1 -, ·- .,,.,.. '" "·""'" ~ ••• •" "'" - I I ,,,,,., •. -''''' 

~I( !!LI ~: : ~ IT LOPS• ~ ~,. oz" "07• 
• --,, ~ 16 O> •6 O> L°"S• J•·ll•I •.. ..........! 11 

05 

" 

0

, ••••• J~-><141 
t-<> 04 " lo PCAS • (< IJ0·0C41 

~·- " ••"- .,_ """" 

J 

~ ~ 0£~ 1 ,; {< IJ. -5'.J[<-7]'7(41 

r

1 

__ __ I r ~ -~ j J: ] --r¢ {l)(ZJJe-36,Jll-7)38(4) {4lJil·S0~.,. 
1 

~ 
1 

·~~re •4
, •

4
, """'"-'"J[• -~·· .. 

1 

1 

.1 ... , .... ,. 12011 12011 ... I ... 
,,. 0" '" ~ r"" "" ' ::; ill r-1 ,~- ~::~J~~~;-'l•I - - -, - ~ , r- - ,,_,_,,~ 

• 04 '20A 
1oon C93 J. 2211pf 

Figure 7-16c 
Extended keyboard lie schematic diagram. part 3 



~~ 
~ ~ 
I I + 

208 



Appendix A 

The 65C02 Microprocessor 

This appendix contains a description of the differences between the 
6502 and the 6SC02 microprocessors. It also contains the data sheet 
for the 65C02 microprocessor. 

The 6502 microprocessor was used in the original Apple Ile, 
Apple II Plus, and Apple II. The 65C02 is a 6502 that uses less power 
and has ten new instructions and two new addressing modes. The 
65C02 is used in the enhanced and extended keyboard Apple Ile's, 
as well as in the Apple Ile. 

In the data sheet tables, execution times are specified in number of 
cycles. One cycle time for the Apple Ile equals 0.978 
microseconds, giving a system clock rate of about 1.02 MHz. 

•!• Note: If you want to write programs that execute on all 
computers in the Apple II series, use only those 65C02 
instructions that are also present on the 6502. 

Differences between 6502 and 65C02 
The data sheet lists the instructions and addressing modes of the 
65C02. This section supplements that information by listing those 
instructions whose execution times or results differ in the 6502 and 
the 65C02. 

209 



Different cycle times 
A few instructions on the 65C02 operate in different numbers of 
cycles than their 65C02 equivalents. These instructions are listed in 
Table A-1. 

Table A-1 
Cycle time differences 

6502 6SC02 
Instruction/mode Opcode cycles cycles 

ASL Absolute, X 1E 7 6 
DEC Absolute, X DE 7 6 
INC Absolute, X FE 7 6 
]MP (Absolute) 6C 5 6 
I.SR Absolute, X 5E 7 6 
ROL Absolute, X 3E 7 6 
ROR Absolute, X 7E 7 6 

Different instruction results 
It is important to note that the BIT instruction when used in 
immediate mode (opcode $89) leaves processor status register 
bits 7 (N) and 6 M unchanged on the 65C02. On the 6502, all 
modes of the BIT instruction have the same effect on the status 
register: the value of memory bit 7 is placed in status bit 7, and 
memory bit 6 is placed in status bit 6. 

Also note that if the JMP indirect instruction (code $6C) references 
an indirect address location that spans a page boundary, the 65C02 
fetches the high-order byte of the effective address from the first 
byte of the next page, while the 6502 fetches it from the first byte of 
the current page. For example, JMP ($02FF) gets AOL from location 
$02FF on both processors. But on the 65C02, ADH comes from 
$0300; on the 6502, ADH comes from $0200. 

Data sheet 
The remaining pages of this appendix are copyright 1982, 
NCR Corporation, Dayton, Ohio, and are reprinted with their 
permission. 

210 Appendix A: The 65C02 Microprocessor 



• GENERAL DESCRIPTION 

The NCR CMOS 6502 is an 8-bit microprocessor which is soft· 
ware compatible with the NMOS 6502. The NCR65C02 hardware 
interfaces with all 6500 peripherals . The enhancements include 
ten additional instructions, e><panded operational codes and 
two new addressing modes . This microprocessor has all of the ad· 
vantages of CMOS technology: low power consumption, increased 
noise immunity and higher rel iability . The CMOS 6502 is a low 
power high performance microprocessor wit h applications in the 
consumer, business, automotive and communications market. 

• FEATURES 

• Enhanced software performance including 27 additional OP codes 
encompassing ten new instructions and two additional 
addressing modes. 

• 66 microprocessor instructions. 

• 15 addressing modes . 

• 178 operational codes . 

• 1MHz, 2MHz operation. 

NCR65C02 

• PIN CONFIGURATION 

VSS RU 

A DY 02 !CUTI 

Ql 1 !CUTI so 
I AQ 0 0 UNI 

Mi NC 

NMi NC 

SVNC RIW 

V DD DO 

AO 01 

Al 02 

A2 0 3 

AJ 04 

OS 

AS 06 

AS 07 

A7 AlS 

AB 

A9 A13 

AlO A12 

All vss 

• Operates at frequencies as low 
as 200 HZ for even lower power • NCR65C02 BLOCK DIAGRAM 
consumption (pseudo-static : stop during 02 high) . 

• Compatible with NMOS 6500 series 
microprocessors . 

• 64 K-byte addressable memory. 

• Interrupt capabi lity . 

• Lower power consumption. 
4mA@ 1MHz. 

• +5 volt power supply . 

• 8-bit bidirectional data bus. 

• Bus Compatible with M6800. 

• Non-maskable interrupt. 

• 40 pin dual -in-line packaging. 

• 8-bit parallel processing 

• Decimal and binary arithmetic. 

• Pipeline architecture . 

• Programmable stack pointer. 

• Variable length stack . 

• Optional internal..l!!:!!!ups for 
(ADY, IAO, SO, NMI and lrrS) 

• Specifications are subject to 
change without notice. 

ADDRESS 
BUS 

f'l •881T llNE 

I • , BIT LINE 

Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA 

rn 1RQ NM1 

G() ! INI 

01 !OUT! 

0 2 IOUTI 

~----+--< ~===~ ~,., 

Data sheet 211 



NCR65C02 
• ABSOLUTE MAXIMUM RATINGS: (Voo = 5.0 v ± 5%, Vss = 0 V, TA = ()"to+ 70"C) 

RATING SYMBOL VALUE UNIT 

SUPPLY VOLTAGE Voo -0.3 to +7.0 v 
INPUT VOLTAGE V1N -0.3 to +7.0 v 
OPERATING TEMP. TA 0 to+ 70 ·c 
STORAGE TEMP. TsTG -55 to+ 150 ·c 

• PIN FUNCTION 
PIN FUNCTION 

AO·A15 Address Bus 
DQ. 07 Data Bus 
Tml. Interrupt Request 
ROY• Ready 

M"°L Memory Lock 
WI• Non·Maskable Interrupt 

SYNC Synchronize 

m· Reset 

~· Set Overflow 

NC No Connection 

~ Read/Write 
VDD Power Supply (+5V) 

VSS Internal Logic Ground 

0o Clock Input 

01, 02 Clock Output 
•This pm has an optional internal pu llup for a No Connect condtt1on . 

• DC CHARACTERISTICS 
SYMBOL MIN. TYP. MAX UNIT 

Input High Voltage 

0o (IN) V1H V55 + 2.4 - Voo v 
Input High Voltage 

RES, NMI , ROY, IRQ, Data, S.O. Vss + 2.0 - - v 
Input Low Voltage 

0o (IN) V1L Vss -0.3 - Vss + 0.4 v 
RES, NMI, ROY, IRQ, Data, S.O. - - Vss+ 0.8 v 

Input Leakage Current 

(V1N = 0 to 5.25V, Voo = 5.25V) l1N 
With pullups -30 - +30 µA 

Without pullups - - +1.0 µA 

Three State (Off State) Input Current 

(V1N =0.4to2.4V, Vee =5.25V) 

Data Lines iw - - 10 µA 

Output High Voltage 

( loH = -100 µAde, V00 =4.75V 

SYNC, Data, AO·A 15, R/W) ~H Vss + 2.4 - - v 
Out Low Voltage 

( loL = 1.6mAdc, Voo = 4 .75V 

SYNC, Data, AQ.A15, R/W) VoL - - v55 + 0.4 v 
Supply Current f = 1 MHz loo - - 4 mA 
Supply Current f = 2MHz loo - - 8 mA 

Capacitance c pF 
(V1N • O, TA = 25°C, f z 1MHz) 

Logic CiN - - 5 
Data - - 10 
AO-A15, R/W, SYNC Cout - - 10 
0o (IN) CGo (IN) - - 10 

212 Appendix A: The 65C02 Microprocessor 



NCR65C02 
• TIMING DIAGRAM 

0o 

ADOR, Rfii 

READ DATA 

WRITE DATA 

SYNC 

ROY, IRQ 

NMI, RES 

so 

-4 

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts. 

• NEW INSTRUCTION MNEMONICS 
HEX 
80 
3A 
1A 
DA 
SA 
FA 
7A 
9C 
9E 
64 
74 
1C 
14 
oc 
04 

MNEMONIC 
BRA 
DEA 
INA 
PHX 
PHY 
PLX 
PLY 
STZ 
STZ 
STZ 
STZ 
TAB 
TAB 
TSB 
TSB 

DESCRIPTION 
Branch relative always [Relative] 
Decrement accumulator [Accum) 
Increment accumulator [Accum] 
Push X on stack [Implied] 
Push Yon stack [Implied] 
Pull X from stack [Implied] 
Pull Y from stack [Implied] 
Store zero [Absolute) 
Store zero [ABS, XI 
Store zero [Zero page I 
Store zero [ZPG,X] 
Test and reset memory bits with accumulator [Absolute] 
Test and reset memory bits with accumulator [Zero page] 
Test and set memory bits with accumulator [Absolute] 
Test and set memory bits with accumulator [Zero page] 

• ADDITIONAL INSTRUCTION ADDRESSING MODES 
HEX 

72 
32 
3C 
34 
02 
52 
7C 
B2 
12 
F2 
92 

MNEMONIC 

ADC 
AND 
BIT 
BIT 
CMP 
EOR 
JMP 
LOA 
ORA 
SBC 
STA 

DESCRIPTION 

Add memory to accumulator with carry [(ZPG)] 
"AND" memory with accumulator [(ZPG)] 
Test memory bits with accumulator [ABS, X] 
Test memory bits with accumulator [ZPG, XI 
Compare memory and accumulator [(ZPG) I 
"Exclusive Or" memory with accumulator [(ZPG)) 
Jump (New addressing mode) [ABS(IND,Xll 
Load accumulator with memory [(ZPG)] 
"OR" memory with accumulator [(ZPG) I 
Subtract memory from accumulator with borrow [(ZPG) l 
Store accumulator in memory [(ZPG)] 

Data sheet 213 



NCR65C02 
• MICROPROCESSOR PROGRAMMING MODEL 

A ACCUMULATOR A 
0 

y INDEX REGISTER Y 
0 

CARRY 1 ·TRUE 

x INDEX REGISTER X 
15 7 
I PCH I PCL ~PROGRAM COUNTER PC 

ZERO 1 •RESULT ZERO 
'---- IJrn DISABLE 1 • DISABLE 

'-------DECIMAL MODE 1 ·TRUE 
'--------BAK COMMAND 1 •BAK 

'--------OVERFLOW 1 • TRUE 
'---------NEGATIVE 1 •NEG. 

8 7 ~STACK POINTERS 11 

• FUNCTIONAL DESCRIPTION 

Timing Control 
The timing control unit keeps track of the instruction 
cycle being monitored. The unit is set to zero each time 
an instruction fetch is executed and is advanced at the 
beginning of each phase one clock pulse for as many 
cycles as is required to complete the instruction. Each 
data transfer which takes place between the registers de· 
pends upon decoding the contents of both the instruc· 
tion register and the timing control unit. 

Program Counter 
The 16·bit program counter provides the addresses which 
step the microprocessor through sequential instructions 
in a program. 
Each time the microprocessor fetches an instruction 
from program memory, the lower byte of the program 
counter (PCL) is placed on the low-order bits of the 
address bus and the higher byte of the program counter 
(PCH) is placed on the high-order 8 bits. The counter is 
incremented each time an instruction or data is fetched 
from program memory. 

Instruction Register and Decode 
Instructions fetched from memory are gated onto the 
internal data bus. These instructions are latched into the 
instruction register, then decoded, along with timing and 
interrupt signals, to generate control signals for the var
ious registers. 

Arithmetic and Logic Unit (ALU) 
All arithmetic and logic operations take place in the 
ALU including incrementing and decrementing internal 
registers (except the program counter). The ALU has no 
internal memory and is used only to perform logical and 
transient numerical operations. 

Accumulator 
The accumulator is a general purpose 8-bit register that 
stores the results of most arithmetic and logic operations, 
and in addition, the accumulator usually contains one of 
the two data words used in these operations. 

Index Registers 
There are two 8-bit index registers (X and Y), which 
may be used to count program steps or to provide an 
index value to be used in generating an effective address. 

When executing an instruction which specifies indexed 
addressing, the CPU fetches the op code and the base 
address, and modifies the address by adding the index 
register to it prior to performing the desired operation. 
Pre· or post-indexing of indirect addresses is possible (see 
addressing modes). 

Stack Pointer 
The stack pointer is an 8-bit register used to control the 
addressing of the variable-length stack on page one. The 
stack pointer is automatically incremented and decre· 
mented under control of the microprocessor to perform 
stack manipulations under direction of either the program 
or interrupts (NMI and IRO). The stack allows simple 
implementation of nested subroutines and multiple level 
interrupts. The stack pointer should be initialized before 
any interrupts or stack operations occur. 

Processor Status Register 
The 8-bit processor status register contains seven status 
flags. Some of the flags are controlled by the program, 
others may be controlled both by the program and the 
CPU. The 6500 instruction set contains a number of 
conditional branch instructions which are designed to 
allow testing of these flags (see microprocessor program· 
ming model). 

214 Appendix A: The 65C02 Microprocessor 



NCR65C02 
• AC CHARACTERISTICS VDD = 5.0V :!: 5%, TA= O"C to 70"C. Load= 1 TTL+ 130 pF 

1MHZ 2MHZ 3MHZ 

Parameter Symbol Min Max Min Max Min Max Unit 

Delay Time, 0o (IN) to 02 (OUT) toLY - 60 - 60 20 60 nS 

Delay Time, 01 (OUT) to 02 (OUT) 1:oLY1 -20 20 -20 20 -20 20 nS 

Cycle Time ~ 1.0 5000"" 0.50 5000--.- 0.33 5000--.- µs 
Clock Pulse Width Low tpL 460 - 220 - 160 - nS 

Clock Pulse Width High tpH 460 - 220 - 160 - nS 

Fall Time, Rise Time tF, tR - 25 - 25 - 25 nS 

Address Hold Time tAH 20 - 20 - 0 - nS 

Address Setup Time tAos - 225 - 140 - 110 nS 

Access Time tA~ 650 - 310 - 170 - nS 

Read Data Hold Time toHR 10 - 10 - 10 - nS 

Read Data Setup Time tQS_u 100 - 60 - 60 - nS 

Write Data Delay Time tMos - 30 - 30 - 30 nS 

Write Data Hold Time l:oHW 20 - 20 - 15 - nS 

SO Setup Time tso 100 - 100 - 100 - nS 

Processor Control Setup Time• • tpcs 200 - 150 - 150 - nS 

SYNC Setup Time tsvNc - 225 - 140 - 100 nS 

ML Setup Time tML - 225 - 140 - 100 nS 

Input Clock Rise/Fall Time tFQo, tRQo - 25 - 25 - 25 nS 

*NCR65C02 can be held static with 0 2 high . 

**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle. 

• MICROPROCESSOR OPERATIONAL ENHANCEMENTS 

Function NMOS 6502 Microprocessor NCR65C02 Microprocessor 

Indexed addressing across page boundary. Extra read of inval id address. Extra read of last instruction byte. 

Execution of invalid op codes. Some terminate only by reset. Results All are NOPs (reserved for future use). 
are undefined. Op Code Bytes Cycles 

X2 2 2 

X3,X7,XB,XF 1 1 

44 2 3 

54, D4, F4 2 4 

SC 3 8 
DC,FC 3 4 

Jump indirect, operand= XXFF. Page address does not increment. Page address increments and adds one 
additional cycle. 

Read/modify/write instructions at One read and two write cycles. Two read and one write cycle. 
effective address. 
Decimal flag . Indeterminate after reset. Initialized to binary mode (D=O) after 

reset and interrupts. 

Flags after decimal operation. Invalid N, V and Z flags. Valid flag adds one additional cycle. 

Interrupt after fetch of BAK instruc· Interrupt vector is loaded, BAK vector BAK is executed, then interrupt is 
tion . is ig_nored. executed. 

• MICROPROCESSOR HARDWARE ENHANCEMENTS 
Function NMOS 6502 NCR65C02 

Assertion of Ready ADY during Ignored. Stops processor during 02. 
write operations. 

Unused input·only pins (i"RTI, Nllifl. Must be connected to low impedance Connected internally by a high-
ADY. m .so). signal to avoid noise problems. resistance to Voo (approximately 250 

Kohm.I 

Data sheet 215 



NCR65C02 
• ADDRESSING MODES 
Fifteen addressing modes are available to the user of the 
NCR65C02 microprocessor. The addressing modes are 
described in the following paragraphs: 

Implied Addressing [Implied) 
In the implied addressing mode; the address containing 
the operand is implicitly stated in the operation code of 
the instruction. 

Accumulator Addressing [Accum) 
This form of addressing is represented with a one byte 
instruction and implies an operation on the accumu· 
lator. 

Immediate Addressing [Immediate) 
With immediate addressing, the operand is contained in 
the second byte of the instruction; no further memory 
addressing is required. 

Absolute Addressing [Absolute) 
For absolute addressing, the second byte of the instruc
tion specifies the eight low-order bits of the effective 
address, while the third byte specifies the eight high-order 
bits . Therefore, this addressing mode allows access to the 
total 64K bytes of addressable memory. 

Zero Page Addressing [Zer~ Page) 
Zero page addressing allows shorter code and execution 
times by only fetching the second byte of the instruction 
and assuming a zero high address byte . The careful use 
of zero page addressing can result in significant increase 
in code efficiency. 

Absolute Indexed Addressing [ABS, X or ABS, Y) 
Absolute indexed addressing is used in conjunction with 
X or Y index register and is referred to as "Absolute, X," 
and "Absolute, Y.'' The effective address is formed by 
adding the contents of X or Y to the address contained 
in ttie second and third bytes of the instruction. This 
mode allows the index register to contain the index or 
count value and the instruction to contain the base 
address. This type of indexing allows any location refer
encing and the index to modify multiple fields, resulting 
in reduced coding and execution time. 

Zero Page Indexed Addressing [ZPG, X or ZPG, YI 
Zero page absolute addressing is used in conjunction 
with the index register and is referred to as "Zero Page, 
X" or "Zero Page, Y ."The effective address is calculated 
by adding the second byte to the contents of the index 
register. Since this is a form of "Zero Page" addressing, 
the content of the second byte references a location in 
page zero. Additionally, due to the "Zero Page" address
ing nature of this mode, no carry is added to the high
order eight bits of memory, and crossing of page boun
daries does not occur. 

Relative Addressing (Relative) 
Relative addressing is used only with branch instructions; 

it establishes a destination for the conditional branch . 
The second byte of the instruction becomes the operand 
which is an "Offset" added to the contents of the pro
gram counter when the counter is set at the next in
struction . The range of the offset is -128 to +127 
bytes from the next instruction. 
Zero Page Indexed Indirect Addressing ((IND, Xl) 
With zero page indexed indirect addressing (usually re
ferred to as indirect X) the second byte of the instruction 
is added to the contents of the X index register; the 
carry is discarded. The result of this addition points to a 
memory location on page zero whose contents is the low
order eight bits of the effective address. The next mem· 
ory location in page zero contains the high-order eight 
bits of the effective address . Both memory locations 
speeifying the high- and low-order bytes of the effective 
address must be in page zero. 

*Absolute Indexed Indirect Addressing (ABS(IND, X)) 
(Jump Instruction Only) 
With absolute indexed indirect addressin9 the contents of 
the second and third instruction bytes are added to the 
X register. The result of this addition; points to a memory 
location containing the lower,ord.er eight bits of the 
effective address. The next memory location contains 
the higher-order eight bits of the effective address . 

Indirect Indexed Addressing ((IND), YI 
This form of addressing is usually referred to as Indirect, 
Y. The second byte of the instruction points to a mem
ory location in page zero. The contents of this memory 
location are added to the contents of the Y index regis· 
ter, the result being the low-order eight bits of the effec· 
tive address. The carry from this addition is added to the 
contents of the next page zero memory location, the 
result being the high-order eight bits of the effective 
address. 

*Zero Page Indirect Addressing ((ZPG)) 
1n the zero page indirect addressing mode, the second 
byte of the instruction points to a memory location on 
page zero containing the low-order byte of the effective 
address. The next location on page zero contains the 
high-order byte of the effective address. 

Absolute Indirect A!ldressing ((ABS)) 
(Jump Instruction Only) 
The second byte of the instruction contains the low.order 
eight bits of a memory location. The high-order eight 
bits of that memory location is contained in the third 
byte of the instruction. The contents of the fully speci· 
fied memory location is the low-order byte of the effec· 
tive address. The next memory location contains the 
high-order byte of the effective address which is loaded 
into the 16 bit program counter. 

,- NOTE: • = New Address Modes 

216 Appendix A: The 65C02 Microprocessor 



• SIGNAL DESCRIPTION 
Address Bus (AO-A15) 
AO-A 15 forms a 16-bit address bus for memory a.nd 1/0 
exchanges on the data bus. The output of each address 
line is TTL compatible, capable of driving one standard 

· TTL load and 130pF. 

Clocks (G(}, G1 , and G2l 
0o is a TTL level input that is used to generate the inter
nal clocks in the 6502. Two full level output clocks are 
generated by the 6502. The 02 clock output is in phase 
with 0Q. The 01 output pin is 180" out of phase with 0o. 
(See timing diagram.) 

Data Bus (00·07) 
The data lines (D0-07) constitute an 8-bit bid irectional 
data bus used for data exchanges to and from the device 
and peripherals . The outputs are three-state buffers 
capable of driving one TTL load and 130 pF. 

Interrupt Request (I RO) 
This TTL compatible input requests that an interrupt 
sequence begin within the microprocessor. The IRO is 
sampled during 02 operation ; if the interrupt flag in .the 
processor status register is zero, .the current instruction 
is completed and the interrupt sequence begins during 
0 1 · The program counter and processor status register 
are stored in the stack. The microprocessor will then set 
the interrupt mask flag high so that no further IROs 
may occur . At the end of this cycle, the program counter 
low will be loaded from address FFFE , and program 
counter h igh from location FFFF, transferring program 
control to the memory vector located at these addresses. 
The ROY signal must be in the high state for any inter
rupt to be 1ecognized. A 3K ohm external resistor should 
be used for proper wire OR operation . 

Memory Lock (ML) 
In a multiprocessor system, the ML output indicates the 
need to defer the rearbitration of the next bus cycle to 
ensure the integrity of read -modify-write instructions. 
ML goes low during ASL, DEC, INC, LSR, ROL, ROR, 
TRB, TS8 memory referencing instructions . This signal 
is low for the modify and write cycles. 

Non-Maskable Interrupt (NMI) 
A negative-going edge on this input requests that a non
maskable interrupt sequence be generated within the 
microprocessor . The NMI is sampled during 02; the cur
rent instruction is completed and the interrupt sequence 
begins during 01. The program counter is loaded with 
the interrupt vector from locations FFFA (low byte) 
and FFFB (high byte), thereby transferring program con
trol to the non -maskable interrupt routine. 

Note: Since this interrupt is non-maskable, another NMI 
can occur before the first is finished . Care should be taken 
when using NMI to avoid this . 

NCR65C02 

Ready (ROY) 
This input allows the user to single-cycle the micropro
cessor on all cycles including write cycles. A negative 
transition to th.e low state, during or coincident with 
phase one (01). will halt the microprocessor with the out
put address lines reflecting the current address being 
fetched . This condition will remain through a subsequent 
phase two (02) in.which the ready signal is low. This fea
ture allows microprocessor interfacing with low-speed 
memciry as well as direct memory access (OMA). 

Reset (RES) 
This input is used to reset the microprocessor. Reset 
must be held low for at least tWo Clock cycles after 
Vo o reaches operating voltage from a power down. A 
positive transistio11 on this pin will then cause an initiali
zation sequence to begin. Likewise, after the system has 
been operating, a low on this line of at least two cycles 
will cease microprocessing activi!l,_followed by initial 
ization after the positive edge on RES. 

When a positive edge is detected, there is an initialization 
sequence lasting six clock cycles. Then the interrupt 
mask flag is set, the decimal mode is cleared, and the pro
gram counter is loaded with the restart vector from loca
tions FFFC (low byte) and FFFD (high byte). This is 
the start location for program control. This input should 
be high in normal operation. 

Read/Write (RJW) 
This signal is normally in the high state indicating that 
the microprocessor is reading data from memory or 1/0 
bus . In the low state the data bus has valid data from the 
microprocessor to be stored at the addressed memory 
location. 

Set Overflow (SO) 
A negative transit ion on this line sets the overflow bit in 
the status code register. The signal is sampled on the trail
ing edge of 01. 

Synchronize (SYNC) 
This output line is provided to identify those cycles dur
ing which the microprocessor is doing an OP CODE 
fetch . The SYNC line goes high during 01 of an OP CODE 
fetch and stays high for the remainder of that cycle. It 
the ROY line is pulled low during the 01 clock pulse in 
which SYNC went high, the processor will stop in its 
current state and will remain in the state until the R DY 
line goes high. In . this manner, the SYNC signal can be 
used to control R DY to cause single instruction execu
tion . 

Data sheet 217 



NCR65C02 
• INSTRUCTION SET - ALPHABETICAL SEQUENCE 

ADC 
AND 
ASL 
BCC 
BCS 
BEQ 
BIT 
BMI 
BNE 
BPL 

0 BAA 
BAK 
eve 
BVS 
CLC 
CLO 
CLI 
CLV 
CMP 
CPX 
CPY 

"DEA 
DEC 
DEX 
DEY 
EDA 

0 1NA 
INC 
INX 
INY 
JMP 
JSR 
LOA 

Add M&mory to Accumulator with Carry 
" ANO" Memory w ith Accumulator 
Shift One Bit Left 
Branch on Carry Clear 
Branch on Carry Set 
Branch on Result Zero 
Test Memory Bits with Accumulator 
Branch on Result M inus 
Branch on Result not Zero 
Branch on Resu lt Plus 
Branch Always 
Force Break 
Branch on Overflow Clear 
Branch on Overflow Set 
Clear Carry Flag 
Clear Decimal Mode 
Clear Interrupt Disable Bit 
Clear Overflow Flag 
Compare Memory and Accumulator 
Compare Memory and Index X 
Compc1re Memory and Index Y 
Decrement Accumulator 
Decrement by One 
Decrement Index X by One 
Decrement Index Y by One 
"Exclusive- or" Memory with Accumulator 
Increment Accumulator 
Increment by One 
Increment Index X by One 
Increment Index Y by One 
Jump to New Location 
Jump to New Locat ion Saving Return Address 
Load Accumulator with Memory 

Note : •=New Instruction 

• MICROPROCESSOR OP CODE TABLE 

s 
D 0 1 2 

0 BAK ORA 
ind, X 

1 BPL ORA OAA 0 t 
rel ind, Y lzpgl 

2 JSR AND 
abs ind, X 

3 BMI AND ANO"t 
rel ind, Y (zpg> 

4 ATI EOA 
ind , X 

5 eve EOA EQA•t 
rel ind, y (zpgl 

6 ATS ADC 
ind, X 

7 BVS ADC Aoc·t 
rel ind, Y (zpgl 

8 BAA• STA 
rel ind, X 

9 BCC STA STA•t 
rel ind, Y (zpgl 

A LOY LOA LOX 
omm ind, X 'mm 

B BCS LOA LDA 0 t 
rel ind, Y (zpgl 

c CPY CMP 
imm ird, x 

D BNE CMP CMP• t 

rel ind, y (zpg) 

E CPX SBC 
imm ind, X 

F BEQ SBC sec·t 
rel ind, y lrpgl 

0 1 2 

Note: • = New OP Codes 
Note: t = New Address Modes 

3 4 

Tse· 
zpg 

TAB• 
zpg 

BIT 
zpg 

BIT° 
zpg, X 

STZ• 
zpg 

STZ" 
zpg, X 

STY 
zpg 

STY 
zpg, X 

LOY 
zpg 

LOY 
zpg, X 

CPY 
zpg 

CPX 
zpg 

3 4 

5 6 7 8 

ORA ASL PHP 
zpg zpg 

ORA ASL CLC 
zpg, X zpg, X 

AND AOL PLP 
zpg zpg 

AND AOL SEC 
zpg, X zpg, X 

EDA LSA PHA 
zpg zpg 

EOA LSA CLI 
zpg, X zpg, X 

ADC ROA PLA 
zpg zpg 

ADC ROA SEI 
zpg, X zpg, X 

STA STX DEY 
zpg zpg 

STA STX TVA 
zpg, X zpg, Y 

LOA LOX TAY 
zpg zpg 

LOA LOX CLV 
zpg, X zpg, y 

CMP DEC INY 
zpg zpg 

CMP DEC CLO 
zpg, X zpg, X 

SBC INC INX 
zpg zpg 

SBC INC SEO 
zpg, X zpg, X 

5 6 7 8 

LOX 
LOY 
LSR 
NOP 
ORA 
PHA 
PHP 

• PHX 
•PHY 

PLA 
PLP 

• PLX 
•PLY 

AOL 
ROA 
ATI 
ATS 
SBC 
SEC 
SEO 
SEI 
STA 
STX 
STY 

"STZ 
TAX 
TAY 

"TAB 
•Tse 

TSX 
TXA 
TXS 
TVA 

9 

ORA 
'mm 

ORA 
abs, Y 

AND 
'mm 

AND 
abs, Y 

EOA 
' mm 

EDA 
abs, Y 

ADC 
'mm 

ADC 
abs, Y 

BIT° 
'mm 

STA 
abs, Y 

LOA 
'mm 

LOA 
abs, Y 

CMP 
imm 

CMP 
abs, Y 

SBC 
omm 

SBC 
abs, Y 

9 

Load I ndel( X with Memory 
Load Index Y with Memory 
Shift One Bit Right 
No Operation 
"OR" Memory with Accumulator 
Push Accumulator on Stack 
Push Processor Status on Stack 
Push Index X on Stack 
Push Index Y on Stack 
Pull Accumulator from Stack 
Pull Processor Status from Stack 
Pull Index X from Stack 
Pull Index Y from Stack 
Rotate One Bit Left 
Rotate One Bit Right 
Return from Interrupt 
Return from Subroutine 
Subtract Memory from Accumulator with Borrow 
Set Carry Flag 
Set Decimal Mode 
Set Interrupt Disable Bit 
Store Accumu lator in Memory 
Store Index X in Memory 
Store Index Yin Memory 
Store Zero in Memory 
Transfer Accumulator to Index X 
Transfer Accumulator to Index Y 
Test and Reset Memory Bits with Accumulator 
Test and Set Memory Bits with Accumulator 
Transfer Stack Pointer ro Index X 
Transfer Index X to Accumulator 
Transfer Index X to Stack Poi nter 
Transfer Index Y to Accumulator 

A B c D E 

ASL Tse· ORA ASL 
A abs abs abs 

INA• TAB• ORA ASL 
A abs abs, X abs, X 

AOL BIT AND AOL 
A abs abs abs 

DEA• Bl Pt AND AOL 
A abs, X abs, X abs, X 

LSA JMP EOA LSA 
A abs abs abs 

PHY 0 EOA LSR 
abs, X abs, X 

ADA JMP ADC ROA 
A (abs) abs abs 

PLY' JMP•t ADC ROA 
abs !ind,Xl abs, X abs, X 

TXA STY STA STX 
abs abs abs 

TXS STZ• STA STZ• 

abs abs, X abs, X 

TAX LOY LOA LOX 
abs abs abs 

TSX LOY LOA LOX 
abs, X abs, X abs, Y 

DEX CPY CMP DEC 
abs abs abs 

PHX• CMP DEC 
abs, X abs, X 

NOP CPX SBC INC 
abs abs abs 

PLX 0 SBC INC 
abs, X abs, X 

A B c D E 

F 

F 

218 Appendix A: The 65C02 Microprocessor 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 



• OPERATIONAL CODES, EXECUTION TIME, AND MEMORY 
REQUIREMENTS 

NCR&SC02 

IMME· ABSO · ZERO IM- !IND, UNO!. RELA· ABS PROCESSOR 

OIATE LUTE PAGE ACCU~ PLIED XI Y ZPG. X ZPG , V ABS , X ABS. Y TlVE IABSI ONO, X IZPGI STATUS CODES 

MNE OPERATION 
76543210 

q!j nl~ OP n I OP n I Of' n I OP n I OP n I OP n I OP n I OP n lloP n I OP n lloP n OP n I OP,, I OP n INV B 0 I Z C MNE 

(1 ,3)692260436532 616271527542 70437943 7252NV ZCAOC ADC A+M+C•A 

:~~~~7M~A ' -o Ill 29 2 2 20 4 3 25 3 2 21 6 2 31 5 2 35 4 2 30 4 3 39 4 3 32 5 2 N . Z . AND 

BCC Btaroch 1f C •O 
BCS Br1roch i i C • 1 

l1I OE 6 3 06 5 2 QA 2 1 16 6 2 1 E 6 3 N . Z C ASL 

121 90 22 . ace 
121 eo22 ecs 

BEQ Branch 11Z• 1 
BIT A AM 
BMI Br1roch itN• l 
BNE Btmch 1f Z• O 
BPL Branch 1f N• O 

BRA Branch Always 
BAK Break 
eve Branch 11 V • o 
BVS Branch 11 V"' l 

CLC o•c 
CL O 0 •O 
C LI O•I 
CLV 0 • V 
CMP A M 
CPX X M 

CP Y Y M 
DEA A . 1 •A 
DEC M · 1 •M 
DEX X 1 • X 
DEY Y 1•Y 

EOA AVM•A 
tNA A+ 1 •A 

INC M+ 1 •M 
INX X + 1 •X 

JMP Jump 10 new loc 
JSR Jump Sub rou1ine 
LOA M •-A 
LOX M • X 
LOY M •Y 

LSR o-~© 

NOP PC• I •PC 
ORAAVM •A 
PH.A. A• M1 S · 1 • S 
PHPP•M1 S · 1•S 

PHX x •M, s 1•s 
PH YY •M1 S · l• S 
PL.A. S + 1 • S M1 • A 
PLP S+l •S M,•P 
PLX S + 1 • S M1 • X 

~~: q;_i·s :;~J 
ROA C:~~ 
RT! Return f t om Inter 
ATS Return from Subr 

sec A M 
SEC 1 •c 
SEO 1 •o 
SE< 1•1 
STA 

STX X • M 
STY 
STZ OO • M 
TAX A • X 
TAY A• Y 

C•A 

TFIB A1u.-1•M 
TSB AVM•M 
TSX S • X 
TXA X •A 
TXS x •s 

Notes: 

121 
14.5) 
121 
121 
121 

121 

121 
121 

111 

111 

111 
111 
111 

111 

111 

111 
Ill 

11 .3) 

141 
141 

89 2 2 2C 432432 

" Jc~ J 2 C9 2 Lil co 
EO 2 EC 4 3 E4 3 2 

co 2 l ~cc 4 3 C4 3 2 
JA 2 1 

CE 6 3 C6 S 2 

49 2 I ~ 40 4 3 4532 
I A 2 1 

EE 6 3 E6 5 2 

4C 3 3 
20 

: ; A5 3 2 A9 2 2 AO 
A2 2 2 AE 4 3 A€3 2 
AO 2 2 AC 4 3 A4 3 2 

4E 6 3 46 5 24.A.21 

09 ' 
2 OD 430532 

" 6 
3 26 s 2 2A 2 1 

SE 6 J 66. 2 6.A. 2 1 

E9 2 2ED 4 3 ES 3 2 

BO 4 3 85 3 2 

SE 4 3 86 3 2 
BC 4 3 84 3 2 
9C 4 3 64 3 2 

1C 6 3 14 5 2 
oc 6 3 04 5 2 

1 Add 1 to " n" if page boundary is crossed 

()() 7 1 

18 2 1 

08 2 1 
5821 
BB 2 1 

CA 2 1 
88 2 1 

EB 2 1 
ca 2 1 

EA 2 1 

48 3 1 
08 3 1 

DA. 3 1 
SA 3 1 
68 4 1 
28 4 1 

7A 4 1 

40 6 1 
60 6 1 

3821 
F8 2 1 
78 2 1 

fA2 1 
AB 2 1 

8A' 1 
BA. 2 1 
.. , 1 

98 1 

2 Add 1 to " n" if branch occurs to same page 

Add 2 to "n" if branch occurs to different page. 

3 . Add 1 to "n" if decimal mode. 
4 V bit equals memory bi t 6 pr ior to execut ion . 

N bit equals memory b it 7 pr ior to execut ion. 

34 4 2 JC 4 3 

C1 6 2 01 5 2 05 4 2 DD 4 3 09 4 3 

06 6 2 DE 6 3 

.. 6 2 51 5 2 SS 4 2 50 4 3 59 4 J 

F6 6 2 FE 6 3 

A1 6 2 BT 5 2 es 4 2 BO 4 3 B9 4 3 
86 4 2 BE 4 3 

84 4 2 BC 4 3 

.. 6' SE 6 3 

01 6 2 11 s 2 15 4 2 ID 4 3 19 4 3 

36 6' 3E 6 3 
76 6 2 7E 6 3 

E1 6 2 Fl 5 2 FS 4 2 FD 4 3 F9 4 3 

81 6 2 9 1 6 2 95 4 2 90 s 3 99. 3 

96 4 2 
94 4 2 
74 4 2 9E S 3 

X Index X 
Y Index Y 
A Accumulator 
M Memory per effective address 

Ms Memory per stack pointer 

•s. The immediate addressing mode of the BIT instruction leaves bits 6 & 7 

(V & N) in the Processor Status Code Register unchanged, 

FO 2 2 

30 2 2 
00 2 2 
10 2 2 

80 2 2 

50 2 2 
70 2 2 

6C 6 J 7C 

+ Add 
- Subtract 
/\ And 
V Or 

6 J 

¥ Exclu5ive or 

BEQ 
""1·~· Z . BIT 

BMI 
BNE 
BPL 

. BRA 
BAK 
BVC 

0 BVS 
. 0 CLC 

0 CLO 
0 cu 

0 CCV 
02. 2 N Z C CMP 

N Z C CPX 

Z C CPY 
l DEA 
l DEC 

DEX 
DEY ., . 2 N . EOR 

N INA 
INC 
INX 
INY 

JMP 
JSR 

B2. 2 N LOA 
LOX 
LOY 

Z C LSR 
NOP 

12 . 2N l ORA 
PHA 
PHP 

PHX 
PHY 

N l PLA 
N V 101 zc PLP 

l PLX 

l PLY 
l c AOL 

. l ~ ROA 
NV 1 0 I Z RTI 

ATS 

F2 S 2NV l C SBC 
1 SEC 

SEO 
SE < 

92 5 2 STA 

l 

r l 

n No. Cycles 
f No. Bytes 

STX 
STY 
STZ 
TAX 
TAY 

TAB 
TSS 
TSX 

TXS 

TVA 

Ms Memory bit 6 
M1 Memory bit 7 

Data sheet 219 



220 

Appendix B 

Directory of Built-in Subroutines 

Here is a list of useful subroutines in the Apple He's Monitor. To use 
these subroutines from machine-language programs, store data 
into the specified memory locations or microprocessor registers as 
required by the subroutine and execute a JSR to the subroutine's 
starting address. After the subroutine performs its function, it 
returns with the 65C02's registers changed as described. 

Warning Do not jump Into the middle of Monitor subroutines. Although 
the starting addresses are the same for all models of the 
Apple II, the actual code is different. 

BASICIN Read the keyboard $C305 

When the 80-column firmware is active, BASICIN is used instead of 
KEYIN. BASICIN operates like KEYIN except that it displays a solid, 
nonblinking cursor instead of a blinking checkerboard cursor. 

BASICOUT Output to screen $C307 

When the 80-column firmware is active, BASICOUT is used instead 
of COUTl. BASICOUT displays the character in the accumulator on 
the Apple He's screen at the current output cursor position and 
advances the output cursor. It places the character using the setting 
of the Normal/Inverse location. It handles control codes; see 
Table 3-3b. BASICOUT returns with all registers intact. 



BELL Output a bell character $FF3A 

BELL writes a bell (Control-G) character to the current output 
device. It leaves the accumulator holding $87. 

BELLI Sends a beep to the speaker $FBDD 

BELLl generates a 1-kHz tone in the Apple Ile's speaker for 
0.1 second. It scrambles the A and X registers. 

CLREOL Clear to end of line $FC9C 

CLREOL clears a text line from the cursor position to the right edge 
of the window. CLREOL destroys the contents of A and Y. 

CLEOLZ Clear to end of line $FC9E 

CLEOLZ clears a text line to the right edge of the window, starting at 
the location given by base address BASL, which is indexed by the 
contents of the Y register. CLEOLZ destroys the contents of A 
and Y. 

CLREOP Clear to end of window $FC42 

CLREOP clears the text window from the cursor position to the 
bottom of the window. CLREOP destroys the contents of A and Y. 

CLRSCR Clear the low-resolution screen $F832 

CLRSCR clears the low-resolution graphics display to black. If you 
call CLRSCR while the video display is in text mode, it fills the 
screen with inverse-mode at-sign(@) characters. CLRSCR destroys 
the contents of A and Y. 

CLRTOP · Clear the low-resolution screen $F836 

CLRTOP is the same as CLRSCR (above), except that it clears only 
the top 40 rows of the low-resolution display. 

COUT Output a character $FDED 

COUT calls the current character output subroutine. The character 
to be output should be in the accumulator. COUT calls the 
subroutine whose address is stored in CSW Oocations $36 and $37), 
which is usually one of the standard character output subroutines, 
COUTl or BASICOUT. 

Appendix B: Directory of Built-In Subroutines 221 



COUTl Output to screen $FDFO 

COUTI displays the character in the accumulator on the Apple He's 
screen at the current output cursor position and advances the 
output cursor. It places the character using the setting of the 
Normal/Inverse location. It handles the codes for carriage return, 
linefeed, backspace, and bell. It returns with all registers intact. 

CROUT Generate a carriage return character $FD8E 

CROUT sends a carriage return character to the current output 
device. 

CROUTl Generate carriage return, clear rest of line $FD8B 

CROUTl clears the screen from the current cursor position to the 
edge of the text window, then calls CROUT. 

GETLN Get an input line with prompt $FD6A 

GE1LN is the standard input subroutine for entire lines of 
characters, as described in Chapter 3. Your program calls GETIN 
with the prompt character in location $33; GETIN returns with the 
input line in the input buffer (beginning at location $0200) and the 
X register holding the length of the input line. 

GETLNZ Get an input line $FD67 

GE'ILNZ is an alternate entry point for GE'ILN that sends a carriage 
return to the standard output, then continues into GETIN. 

GETLNl Get an input line, no prompt $FD6F 

GE1LN1 is an alternate entry point for GE1LN that does not issue a 
prompt before it accepts the input line. If, however, the user 
cancels the input line, either with too many backspaces or with a 
Control-X, then GE1LN1 will issue the contents of location $33 as a 
prompt when it gets another line. 

HLINE Draw a horizontal line of blocks $F819 

HUNE draws a horizontal line of blocks of the color set by SETCOL 
on the low-resolution graphics display. Call HLINE with the vertical 
coordinate of the line in the accumulator, the leftmost horizontal 
coordinate in the Y register, and the rightmost horizontal 
coordinate in location $2C. HLINE returns with A and Y scrambled 
X intact. 

222 Appendix B: Directory of Built-In Subroutines 



HOME Home cursor and clear $FC58 

HOME clears the display and puts the cursor in the home position: 
the upper-left corner of the screen. 

IO REST Restore all registers $FF3F 

IOREST loads the 65C02's internal registers with the contents of 
memory locations $45 through $49. 

IOSAVE Save all registers $FF4A 

IOSA VE stores the contents of the 65C02's internal registers in 
locations $45 through $49 in the order A, X, Y, P, S. The contents 
of A and X are changed and the decimal mode is cleared. 

KEYIN Read the keyboard $FD1B 

KEYIN is the keyboard input subroutine. It reads the Apple Ile's 
keyboard, waits for a keypress, and randomizes the random number 
seed at $4E-$4F. When a key is pressed, KEYIN removes the 
blinking cursor from the display and returns with the keycode in the 
accumulator. KEYIN is described in Chapter 3. 

MOVE Move a block of memory $FE2C 

MOVE copies the contents of memory from one range of locations 
to another. This subroutine is the same as the MOVE command in 
the Monitor, except that it takes its arguments from pairs of 
locations in memory, low-byte first. The destination address must 
be in A4 ($42-$43), the starting source address in Al ($3C-$3D), 
and the ending source address in A2 ($3E-3F) when your program 
calls MOVE. Register Y must contain $00 when your program calls 
MOVE. 

NEXTCOL Increment color by 3 $F85F 

NEXfCOL adds 3 to the current color (set by SETCOL) used for low
resolution graphics. 

PLOT Plot on the low-resolution screen $F800 

PLOT puts a single block of the color value set by SETCOL on the 
low-resolution display screen. The block's vertical position is 
passed in the accumulator, its horizontal position in the Y register. 
PLOT returns with the accumulator scrambled, but X and Y intact. 

Appendix B: Directory of Built-in Subroutines 223 



PRBLNK Print three spaces $F948 

PRBLNK outputs three blank spaces to the standard output device. 
On return, the accumulator usually contains $AO, the X register 
contains 0. 

PRBL2 Print many blank spaces $F94A 

PRBL2 outputs from 1 to 256 blanks to the standard output device. 
Upon entry, the X register should contain the number of blanks to · 
be output. If X=$00, then PRBL2 will output 256 blanks. 

PRBYTE Print a hexadecimal byte $FDDA 

PRBYTE outputs the contents of the acctimulator in hexadecimal on 
the current output device. The contents of the accumulator are 
scrambled. 

]>READ Read a hand control $FB1E 

PREAD returns a number that repre5ents the position of a hand 
control. You pass the number of the hand control in the X register. 
If this number is not valid (not equal to 0, 1, 2, or 3), strange things 
may happen. PREAD returns with a number from $00 to $FF in the 
Y register. The accumulator is scrambled. 

PRERR Print ERR $FF2D 

PRERR sends the word ERR, followed by a bell character, to the 
standard output device. On return, the accumulator is scrambled. 

PRHEX Print a hexadecimal digit $FDE3 

PRHEX prints the lower nibble of the accumulator as a single 
hexadecimal digit. On return, the contents of the accumulator are 
scrambled. 

PRNTAX Print A and X in hexadecimal $F941 

PRNTAX prints the contents of the A and X registers as a four-digit 
hexadecimal value. The accumulator contains the first byte output, 
the X register contains the second. On return, the contents of the 
accumulator are scrambled. 

RD CHAR Get an input character or escape code $FD35 

RDCHAR is an alternate input subroutine that gets characters from 
the standard input subroutine, and also interprets the escape codes 
listed in Chapter 3. 

224 Appendix B: Directory of Built-In Subroutines 



RD KEY Get an input character $FDOC 

RDKEY is the character input subroutine. It places a blinking cursor 
on the display at the cursor position and jumps to the subroutine 
whose address is stored in KSW Oocations $38 and $39), usually the 
standard input subroutine KEYIN, which returns with a character in 
the accumulator. 

READ Read a record from a cassette $FEFD 

READ reads a series of tones at the cassette input port, converts 
them to data bytes, and stores the data in a specified range of 
memory locations. Before calling READ, the address of the first 
byte must be in Al ($3C-$3D) and the address of the last byte must 
be in A2 ($3E-$3F). 

READ keeps a running exclusive-OR of the data bytes in CHKSUM 
($2E). When the last memory location has been filled, READ reads 
one more byte and compares it with CHKSUM. If they are equal, 
READ sends out a beep and returns; if not, it sends the word ERR 

through COUT, sends the beep, and returns. 

SCRN Read the low-resolution graphics screen $F871 

SCRN returns the color value of a single block on the low-resolution 
graphics display. Call it with the vertical position of the block in the 
accumulator and the horizontal position in the Y register. Call it as 
you would call PLOT (above). The color of the block will be 
returned in the accumulator. No other registers are changed. 

SETCOL Set low-resolution graphics color $F864 

SETCOL sets the color used for plotting in low-resolution graphics 
to the value passed in the accumulator. The colors and their values 
are listed in Table 2-6. 

SETINV Set inverse mode $FEBO 

SETINV sets the dislay format to inverse. COUTl will then display 
all output characters as black dots on a white background. The 
Y register is set to $3F, all others are unchanged. 

SETNORM Set normal mode $FE84 

SETNORM sets the display format to normal. COUTl will then 
display all output characters as white dots on a black background. 
On return, the Y register is set to $FF, all others are unchanged. 

Appendix B: Directory of Built-in Subroutines 225 



VERIFY Compare two blocks of memory $FE36 

VERIFY compares the contents of one range of memory to another. 
This subroutine is the same as the VERIFY command in the 
Monitor, except it takes its arguments from pairs of locations in 
memory, low-byte first. The destination address must be in A4 
($42-$43), the starting source address in Al ($3C-$3D), and the 
ending source address in A2 ($3E-$3F) when your program calls 
VERIFY. 

VLINE Draw a vertical line of blocks $F828 

VLINE draws a vertical line of blocks of the color set by SETCOL on 
the low-resolution display. You should call VLINE with the 
horizontal coordinate of the line in the Y register, the top vertical 
coordinate in the accumulator, and the bottom vertical coordinate 
in location $2D. VLINE will return with the accumulator scrambled. 

WAIT Delay $FCA8 

WAIT delays for a specific amount of time, then returns to the 
program that called it. The amount of delay is specified by the 
contents of the accumulator. The delay is l/2(26+27A+SAA2) 
microseconds, where A is the contents of the accumulator. WAIT 
returns with the accumulator zeroed and the X and Y registers 
undisturbed. 

WRITE Write a record on a cassette $FECD 

WRITE converts the data in a range of memory to a series of tones at 
the cassette output port Before calling WRITE, the address of the 
first data byte must be in Al ($3C-$3D) and the address of the last 
byte must be in A2 ($3E-$3F). The subroutine writes a ten-second 
continuous tone as a header, then writes the data followed by a one
byte checksum. 

226 Appendix B: Directory of Built-In Subroutines 



Appendix C 

Apple II Family Differences 

This appendix lists the differences among the Apple II Plus, the 
original, enhanced, and extended keyboard Apple Ile's, and the 
Apple Ile. 

If you're trying to write software to run on more than one version of 
the Apple II, this appendix will help you avoid unexpected 
problems of incompatibility. 

The differences are listed here in approximately the order you are 
likely to encounter them: obvious differences first, technical details 
later. Each entry in the list includes references to the chapters in 
this manual where the item is described. 

Keyboard 
The Apple Ile and Apple Ile have a 63-key uppercase and lowercase 
keyboard. The keyboard includes fully operational Shift and Caps 
Lock keys. It also includes four directional arrow keys for moving the 
cursor. Chapter 2 includes a description of the keyboard. The 
cursor-motion keys are described in Chapter 3. 

The extended keyboard Ile keyboard includes an 18-key numeric 
keypad, for a total of 81 keys. 

227 



Apple keys 
The keyboards for the original and enhanced Apple He's and the 
Apple Ile have two keys marked with the Apple logo. These keys, 
called the Open Apple key and Solid Apple key, are used with the 
Reset key to select special reset functions. They are connected to the 
buttons on the hand controls, so they can be used for special 
functions in programs. 

On the extended keyboard Ile, the Solid Apple key is replaced by 
the Option key and the Open Apple key is simply referred to as the 
Apple key. 

The Apple II and the Apple II Plus do not have Apple keys. 

Character sets 
The Apple Ile and Apple Ile can display the full ASCII character set, 
uppercase and lowercase. For compatibility with older Apple II's, 
the standard display character set includes flashing uppercase 
instead of inverse-format lowercase; you can also switch to an 
alternate character set with inverse lowercase and uppercase but no 
flashing. Chapter 2 includes a description of the display character 
sets. Chapter 3 tells you how to switch display formats . 

The Apple Ile and the enhanced and extended keyboard Apple Ile 
include a set of "graphic" text characters, called MouseText 
characters, that replace some of the inverse uppercase characters in 
the alternate character set of the original Apple Ile. MouseText 
characters are described in Chapter 2. 

80-column display 
With the addition of an 80-column text card, the Apple Ile can 
display 80 columns of text. The 80-column display j.s completely 
compatible with both graphics modes-you can even use it in 
mixed mode. (If you prefer, you can use an old-style 80-column 
card in an expansion slot instead.) Chapter 2 includes a description 
of the 80-column display. 

The Extended 80-Column Text Card is a standard accessory in the 
enhanced Ile, and comes installed in the extended keyboard Ile. 
The Apple Ile has a built-in Extended 80-Column Text Card. 

228 Appendix C: Apple II Family Differences 



Escape codes and control characters 
On the Apple Ile and Apple Ile, the display features mentioned 
above (and many others not mentioned) can be controlled from 
the keyboard by escape sequences and from programs by control 
characters. Chapter 3 includes descriptions of those escape codes 
and control characters. 

Built-in Language Card 
The 16K bytes of RAM you add to the Apple II Plus by installing the 
Language Card is built into the Apple Ile and Apple Ile, giving the 
Apple Ile a standard memory size of 64K bytes. ('The Apple Ile has a 
built-in Extended 80-Column Text Card as well, giving it a standard 
memory size of 128K bytes.) In the Apple Ile, this 16K-byte block of 
memory is called the bank-switched memory. It's described in 
Chapter 4. 

Auxiliary memory 
By installing the Apple Ile Extended 80-Column Text Card, you can 
add an alternate 64K bytes of RAM to the Apple Ile. Chapter 4 tells 
you how to use the additional memory. (The Extended 80-Column 
Text Card also provides the 80-column display option.) 

The Extended 80-Column Text Card is a standard accessory in the 
enhanced Ile, and comes installed in the extended keyboard Ile. 

The Apple Ile has a built-in Extended 80-Column Text Card. 

Auxiliary slot 
In addition to the expansion slots on the Apple II Plus, the 
Apple Ile has a special slot that is used either for the 80-Column 
Text Card or for the Extended 80-Column Text Card. This slot is 
identified in Chapter 1 and described in Chapter 7. 

The Apple Ile has the functions of the auxiliary slot built in. 

Auxiliary slot 229 



Back panel and connectors 
The Apple Ile has a metal back panel with space for several D-type 
connectors. Each peripheral card you add comes with a connector 
that you install in the back panel. Chapter 1 includes a description 
of the back panel; for details, see the installation instructions 
supplied with the peripheral cards. 

The Apple IIc back panel has seven built-in connectors. 

Soft switches 
The display and memory features of the Apple Ile and the Apple IIc 
are controlled by soft switches like the ones on the Apple II Plus. On 
the Apple Ile and the Apple Ile, programs can also read the settings 
of the soft switches. Chapter 2 describes the soft switches that 
control the display features, and Chapter 4 describes the soft 
switches that control the memory features. 

Built-in self-test 
The Apple IIe has built-in firmware that includes a self-test routine. 
The self-test is intended primarily for testing during manufacturing, 
but you can run it to be sure the Apple Ile is working correctly. The 
self-test is described in Chapter 4. 

The Apple IIc also has built-in diagnostics. 

Forced reset 
Some programs on the Apple II Plus take control of the reset 
function to keep users from stopping the machine and copying the 
program. The Apple Ile and Apple Ile have a forced reset that writes 
over the program in memory. By using the forced reset, you can 
restart the Apple Ile (or Apple Ile) without turning power off and on 
and causing unnecessary stress on the circuits. The forced reset is 
described in Chapter 4. 

230 Appendix C: Apple II Family Differences 



These features are described in 
Chapter 7. 

Interrupt handling 
Even though most application programs don't use interrupts, the 
Apple Ile (and Apple Ile) provide for interrupt-driven programs. 
For example, the 80-column firmware periodically enables 
interrupts while it is clearing the display (normally a long time to 
have interrupts locked out). Interrupts are discussed in Chapter 6. 

Vertical sync for animators 
Programs with animation on the Apple Ile and Apple Ile can stay in 
step with the display and avoid flickering objects in their displays. 
Chapter 7 includes a description of the video generation and the 
vertical sync. 

Signature byte 
A program can find out whether it's running on an Apple Ile, 
Apple Ile, Apple III (in emulation mode), or older model Apple II 
by reading the byte at location $FBB3 in the System Monitor. In the 
Apple Ile Monitor, this byte's value is $06; in the Autostart Monitor 
(the standard Monitor on the Apple II Plus), its value is $EA. (If you 
start up with DOS and switch to Integer BASIC, the Autostart 
Monitor is active and the value at location $FBB3 is $EA, even on 
an Apple Ile.) Obviously, there are lots of other locations that have 
different values in the different versions of the Monitor; location 
$FBB3 was chosen because it will have the value $o6 even in future 
revisions of the Apple Ile Monitor. 

Hardware implementation 
The hardware implementation of the Apple Ile is radically different 
from the Apple II and Apple II Plus. Three of the more important 
differences are 

o the custom ICs: the IOU and MMU 

o the video hardware, which uses ROM to generate both text and 
graphics 

o the peripheral data bus, which is fully buffered 

Hardware Implementation 231 



For more Information about the 
Apple lie. see the Apple lie 
Technical Reference. 

The Apple Ile 

o shares some of the custom !Cs of the Apple Ile 

o has some new ones all its own 

o lacks the slots of the Apple Ile, replacing some of them with built
in 1/0 ports 

232 Appendix C : Apple II Family Differences 



Appendix D 

Operating Systems 
and Languages 

1bis appendix is an overview of the characteristics of operating 
systems and languages when run on the Apple Ile. It is not intended 
to be a full account. For more information, refer to the manuals that 
are provided with each product. 

Operating systems 
This section discusses the operating systems that can be used with 
the Apple Ile. 

Pro DOS 
ProDOS is the preferred disk operating system for the Apple Ile. It 
supports interrupts, startup from drives other than a Disk II, and all 
other hardware and firmware features of the Apple Ile. 

DOS 3.3 
The Apple Ile works with DOS 3.3. The Apple Ile can also access 
DOS 3.2 disks by using the BASICS disk. However, neither version 
of DOS takes full advantage of the features of the Apple Ile. DOS 
support is provided only for the sake of Apple II series 
compatibility. 

233 



An aid for assembly-language 
programming is the ProDOS 
Assembler Tools manual 
(A2W0013) . 

Pascal operating system 
The Apple II Pascal operating system was developed from the UCSD 
Pascal system from the University of California at San Diego. While 
it shares many characteristics of that system, it has been extended 
by Apple in several areas. 

Pascal versions 1.2 and later support interrupts and all the hardware 
and firmware features of the Apple Ile. 

The Apple II Pascal system uses a disk format different from either 
ProDOS or DOS 3.3. 

CP/M 
CP/M is an operating system developed by Digital Research that 
runs on either the Intel 8080 or Zilog Z80 microprocessors. This 
means that a coprocessor peripheral card, available from several 
manufacturers for the Apple Ile, is required to run CP /M. Several 
versions of CP/M from 1.4 through 3.0 and later can be run on an 
Apple Ile with an appropriate coprocessor card. 

LaAguages 
This section discusses special techniques to use, and characteristics 
to be aware of, when using Apple programming languages with. the 
Apple Ile. 

Assembly language 
Programs written in assembly language have the potential of 
extracting the most speed and efficiency from your Apple Ile, but 
they also require the most effort on your part. 

234 Appendix D: Operating Systems and Languages 



Applesoft BASIC 

The focus of the chapters in this manual is assembly language, and 
so most addresses and values are given in hexadecimal notation. 
Appendix E in this manual includes tables to help you convert from 
hexidecimal to the decimal notation you will need for BASIC. 

In BASIC, use a PEEK to read a location (instead of the LDA used in 
assembly language), and a POKE (instead of STA) to write to a 
location. If you read a hardware address from a BASIC program, 
you get a value between 0 and 255. Bit 7 holds a place value of 128, 
so if a soft switch is on, its value will be equal to or greater than 128; 
if the switch is off, the value will be less than 128. 

Integer BASIC 

Integer BASIC is not included in the Apple Ile firmware. If you want 
to run it on your Apple Ile, you must use DOS 3.3 to load it in to the 
system. ProDOS does not support Integer BASIC. 

Pascal language 

The Pascal language works on the Apple Ile under versions 1.1 and 
later of the Pascal Operating System. However, for best 
performance, use Pascal 1.2 or a later version. 

Fortran 

Fortran works under version 1.1 of the Pascal Operating System, 
which does not detect or use certain Apple Ile features, such as 
auxiliary memory. Therefore, Fortran does not take advantage of 
these features. 

Languages 235 



236 

Appendix E 

Conversion Tables 

1bis appendix briefly discusses bits and bytes and what they can 
represent. It also contains conversion tables for hexadecimal to 
decimal and negative decimal, for low-resolution display dot 
patterns, display color values, and a number of eight-bit codes. 

These tables are intended for convenient reference. This appendix 
is not intended as a tutorial for the materials discussed. The brief 
section introductions are for orientation only. 

Bits and bytes 
1bis section discusses the relationships between bit values and their 
position within a byte. The following are some rules of thumb 
regarding the 65C02 and 6502: 

o A bit is a binary digit; it can be either a 0 or a 1. 

o A bit can be used to represent any two-way choice. Some choices 
that a bit can represent in the Apple Ile are listed in Table E-1. 

Table E-1 
What a bit can represent 

Context Representing O= 1 = 

Binary number Place value 0 1 x that power 
of2 

Logic Condition False True 

Any switch Position Off On 

Any switch Position Clear• Set 

Serial transfer Beginning Start Carrier (no 
information 
yet) 



Table E-2 
Values represented 
by a nibble 

Binary Hex Dec 

0000 $00 0 
0001 $01 1 
0010 $02 2 
0011 $03 3 
0100 $04 4 
0101 $05 5 
0110 $06 6 
0111 $07 7 
1000 $08 8 
1001 $09 9 
1010 $0A 10 
1011 $OB 11 
1100 $0C 12 
1101 $00 13 
1110 $OE 14 
1111 $OF 15 

Table E· 1 (continued) 
What a bit can represent 

Context Representing O= 1 = 

Serial transfer Data 0 value 1 value 

Serial transfer Parity SPACE MARK 

Serial transfer End Stop bit(s) 

Serial transfer Communication BREAK Carrier 
state 

P reg. bit N Neg. result? No Yes 

P reg. bit V Overflow? No Yes 

P reg. bit B BRK command? No Yes 

P reg. bit D Decimal mode? No Yes 

P reg. bit I IRQ interrupts Enabled Disabled 
(masked out) 

P reg. bit Z Zero result? No Yes 

P reg. bit C Carry required? No Yes 

• Sometimes ambiguously termed reset 

o Bits can also be combined in groups of any size to represent 
numbers. Most of the commonly used sizes are multiples of four 
bits. 

o Four bits are a nibble (sometimes spelled nybble). 

o One nibble can represent any of 16 values. Each of these values is 
assigned a number from 0 through 9 and (because our decimal 
system has only 10 of the 16 digits we need) A through F. 

o Eight bits (two nibbles) make a byte (Figure E-1 and Table E-2). 

o One byte can represent any of 16 x 16 (or 256) values. The value 
can be specified by exactly two hexadecimal digits. 

High Nibble 

MSB 
7 6 5 4 

$80 $40 $20 $10 
128 64 32 16 

Figure E-1 
Bits, nibbles, and bytes 

Low Nibble 

3 2 

$08 $04 
8 4 

LSB 
0 

$02 $01 
2 

Hexadecimal 
Decimal 

Bits and bytes 237 



238 

o Bits within a byte are numbered from bit 0 on the right to bit 7 on 
the left. 

o The bit number is the same as the power of two that it represents, 
in a manner completely analogous to the digits in a decimal 
number. 

o One memory position in the Apple Ile contains one eight-bit 
byte of data. 

o How byte values are interpreted depends on whether the byte is 
an instruction in a language, part or all of an address, an ASCII 
code, or some other form of data. Tables E-6 through E-13 list 
some of the ways bytes are commonly interpreted. 

o Two bytes make a word. The 16 bits of a word can represent any 
one of 256 x 256 (or 65,536) different values. 

o The 65C02 uses a 16-bit word to represent memory locations. It 
can therefore distinguish among 65,536 (64K) locations at any 
given time. 

o A memory location is one byte of a 256-byte page. The low-order 
byte of an address specifies this byte. The high-order byte 
specifies the memory page the byte is on. 

Hexadecimal and decimal 
Use Table E-3 for conversion of hexadecimal and decimal 
numbers. 

Table E-3 
Hexadeclmal/declmal conversion 

Digit $xOOO $0x00 $00x0 $000x 

F 61440 3840 240 15 
E 57344 3584 224 14 
D 53248 3328 208 13 
c 49152 3072 192 12 
B 45056 2816 176 11 
A 40960 256o 16o 10 
9 36864 2304 144 9 
8 32768 2048 128 8 
7 28672 1792 112 7 
6 24576 1536 96 6 
5 20480 1280 80 5 
4 16384 1024 64 4 
3 12288 768 48 3 
2 8192 512 32 2 
1 4096 256 16 1 

Appendix E: Conversion Tables 



To convert a hexadecimal number to a decimal number, find the 
decimal numbers corresponding to the positions of each 
hexadecimal digit. Write them down and add them up. 

For example: 

$3C = ? $FD47 ? 

$30 = 48 $FOOO 61440 . 
$0C = 12 $ DOO 3328 

$ 40 64 
$3C = 60 $ 7 7 

$FD47 64839 

To convert a decimal number to hexadecimal, subtract from the 
decimal number the largest decimal entry in the table that is less 
than the number. Write down the hexadecimal digit (noting its 
place value) also. Now subtract the largest decimal number in the 
table that is less than the decimal remainder, and write down the 
next hexadecimal digit. Continue until you have zero left. Add up 
the hexadecimal numbers. 

For example: 

16215 $ ? 
16215 - 12288 3927 12288 $7000 

3927 - 3840 87 3840 $ FOO 
87 - 80 7 80 $ 50 

7 7 $ 7 

16215 $7F57 

Hexadecimal and negative decimal 
If a number is larger than decimal 32,767, Applesoft BASIC allows 
and Integer BASIC requires that you use the negative-decimal 
equivalent of the number. Table E-4 is set up to make it easy for you 
to convert a hexadecimal number directly to a negative decimal 
number. 

Hexadecimal and negative decimal 239 



Table E-4 
Hexadecimal to negative decimal conversion 

Digit $xOOO $$Ox00 $$00x0 $$000x 

F 0 0 0 -1 
E -4096 -256 -16 -2 
D -8192 -512 -32 -3 
c -12288 -768 -48 -4 
B -16384 - 1024 -64 -5 
A -20480 -1280 -80 -6 
9 -24576 -1536 -96 -7 
8 -28672 -1792 -112 -8 
7 -2048 -128 -9 
6 -2304 -144 -10 
5 -2560 -160 -11 
4 -2816 -176 -12 
3 -3072 -192 -13 
2 -3328 -208 -14 
1 -3584 -224 -15 
0 -3840 -240 -16 

To perform this conversion, write down the four decimal number~ 
corresponding to the four hexadecimal digits (zeros included). 
Then add their values. The resulting number is the desired negativ 
decimal number. 

For example: 

$C010 = - ? 

$COOO: -12288 
$ 000: - 3840 
$ 10: - 224 
$ 0: 16 

$C010 -16368 

To convert a negative-decimal number to a positive decimal 
number, add it to 65,536. (This addition ends up looking like 
subtraction.) 

For example: 

-151 = + ? 
65536 + (-151) = 65536 - 151 = 65385 

To convert a negative-decimal number to a hexadecimal number, 
first convert it to a positive decimal number, then use Table E-3. 

240 Appendix E: Conversion Tables 



Graphics bits and pieces 
Table E-5 is a quick guide to the hexadecimal values corresponding 
to seven-bit high-resolution patterns on the display screen. Since 
the bits are displayed in reverse order, it takes some ·calculation to 
determine these values. Table E-5 should make it easy. 

Table E-5 
Bits in Data Byte Hexadecimal values for high-resolution dot patterns 

8 6 5 4 3 2 0 Bit pattern x=O X=l Bit pattern X=O x=l 

xOOOOOOO $00 $80 xOlOOOOO $02 $82 
xOOOOOOl $40 $CO x0100001 $42 $C2 
x0000010 $20 $AO x0100010 $22 $A2 
xOOOOOll $60 $EO x0100011 $62 $E2 

0 3 6 
x0000100 $10 $90 x0100100 $12 $92 

2 4 5 x0000101 $50 $DO x0100101 $52 $D2 
Dots on Graphics Screen x0000110 $30 $BO x0100110 $32 $B2 

Figure E-2 xOOOOlll $70 $FO x0100111 $72 $F2 
Bit ordering in graphics displays xOOOlOOO $08 $88 x0101000 $0A $8A 

x0001001 $48 $C8 x0101001 $4A $CA 
x0001010 $28 $A8 x0101010 $2A $AA 
x0001011 $68 $E8 x0101011 $6A $EA 
x0001100 $18 $98 x0101100 $1A $9A 
x0001101 $58 $D8 x0101101 $SA $DA 
x0001110 $38 $B8 x0101110 $3A $BA 
xOOOllll $78 $F8 x0101111 $7A $FA 
x0010000 $04 $84 x0110000 $06 $86 
x0010001 $44 $C4 x0110001 $46 $C6 
x0010010 $24 $A4 x0110010 $26 $A6 
x0010011 $64 $E4 x0110011 $66 $E6 
x0010100 $14 $94 x0110100 $16 $96 
x0010101 $54 $D4 x0110101 $S6 $D6 
x0010110 $34 $B4 x0110110 $36 $B6 
x0010111 $74 $F4 x0110111 $76 $F6 
x0011000 $0C $8C xOlllOOO $OE $8E 
x0011001 $4C $CC x0111001 $4E $CE 
x0011010 $2C $AC x0111010 $2E $AE 
x0011011 $6C $EC x0111011 $6E $EE 
x0011100 $1C $9C x0111100 $1E $9E 
x0011101 $SC $DC x0111101 $SE $DE 
x0011110 $3C $BC x0111110 $3E $BE 
xOOlllll $7C $FC xOllllll $7E $FE 

Graphics bits and pieces 241 



The x represents bit 7. Zeros represent bits that are off; ones, bits 
that are on. Use the first hexadecimal value if bit 7 is to be off, and 
the second if it is to be on. 

For example, to get bit pattern 00101110, use $3A; for 10101110, 
use $BA. 

Table E-5 (continued) 
Hexadecimal values for hlgh-resolutlon dot patterns 

Bit pattern x=O x=l Bit pattern x=O x=l 

xlOOOOOO $01 $81 xllOOOOO $03 $83 
xlOOOOOl $41 $Cl x 11()()()()1 $43 $C3 
xlOOOOlO $21 $Al xllOOOlO $23 $A3 
xlOOOOll $61 $El xllOOOll $63 $E3 
x1000100 $11 $91 xllOOlOO $13 $93 
x1000101 $51 $Dl xll00101 $53 $D3 
x1000110 $31 $Bl x1100110 $33 $B3 
xlOOOlll $71 $Fl xllOOlll $73 $F3 
x1001000 $09 $89 xllOlOOO $OB $8B 
x1001001 $49 $C9 xl 101001 $4B $CB 
x1001010 $29 $A9 X:1101010 $2B $AB 
xl00101 l $69 $E9 x1101011 $6B $EB 
x1001100 $19 $99 xllOllOO $1B $9B 
x1001101 $59 $D9 xll01101 $5B $DB 
xlOOlllO $39 $B9 xll01110 $3B $BB 
xlOOllll $79 $F9 xllOllll $7B $FB 
x1010000 $05 $85 xlllOOOO $07 $87 
x1010001 $45 $C5 xll 10001 $47 $C7 
x1010010 $25 $A5 x1110010 $27 $A7 
x1010011 $65 $E5 xlllOOll $67 $E7 
xl010100 $15 $95 xll 10100 $17 $97 
x1010101 $55 $D5 xlll0101 $57 $D7 
xl010110 $35 $B5 xl110110 $37 $B7 
x1010111 $75 $F5 xlllOlll $77 $F7 
x1011000 $OD $8D xllllOOO $OF $8F 
x1011001 $4D $CD xll 11001 $4F $CF 
x1011010 $2D $AD xllilOIO $2F $AF 
x1011011 $6D $ED xllllOll $6F $EF 
xl011100 $1D $9D xlllllOO $1F $9F 
:ic1011101 $5D $DD xlllllOl $5F $DF 
x1011110 $3D $BD xllllllO $3F $BF 
xlOlllll $7D $FD xlllllll $7F $FF 

242 Appendix E: Conversion Tables 



The MouseText characters are 
shown in Table E-8. 

Eight-bit code conversions 
Tables E-5 through E-12 show the entire ASCII character set twice: 
once with the high bit off, and once with it on. Here is how to 
interpret these tables. 

o The Btnary column has the eight-bit code for each ASCII 
character. 

o The first 128 ASCII entries represent seven-bit ASCII codes plus a 
high-order bit of 0 (SP ACE parity or Pascal)-for example, 
010010000 for the letter H 

o The last 128 ASCII entries (from 128 through 255) represent 
seven-bit ASCII codes plus a high-order bit of 1 (MARK parity or 
BASIC)-for example, 11001000 for the letter H 

o A transmitted or received ASCII character will take whichever 
form is appropriate if odd or even parity is selected-for 
example, 11001000 for an odd-parity H, 01001000 for an even
parity H. 

o The ASCII Char column gives the ASCII character name. 

o The Interpretatton column spells out the meaning of special 
symbols and abbreviations, where necessary. 

o The What to 1}'pe column indicates what keystrokes generate the 
ASCII character (where it is not obvious). 

The columns marked Prl and Alt indicate what displayed character 
results from each code when using the primary or alternate display 
character set, respectively. Boldface is used for inverse characters; 
italic is used for flashing characters. 

Note that the values $40 through $5F.(and $CO through $DF) in the 
alternate character set are displayed as MouseText characters if 
MouseText is turned on. 

•!• Note: The primary and alternate displayed character sets in 
Tables E-6 through E-13 are the result of firmware mapping. 
The character generator ROM actually contains only one 
character set. The firmware mapping procedure is described in 
the section "Inverse and Flashing Text" in Chapter 3. 

Eight-bit code conversions 243 



Table E-6 
Control characters, high bit off 

Binary Dec Hex ASCII char Interpretation Whc;it to type Prl Alt 

0000000 0 $00 NUL Blank (null) Control-@ @ @ 

0000001 1 $01 SOH Start of header Control-A A A 
0000010 2 $02 STX Start of text Control-B B B 
0000011 3 $03 ETX End of text Control-C c c 
0000100 4 $04 EOT End of transm Control-D D D 
0000101 5 $05 ENQ Enquiry Control-E E E 

0000110 6 $06 ACK Acknowledge Control-F F F 
0000111 7 $07 BEL Bell Control-G G G 
0001000 8 $08 BS Backspace Control-H H H 

or Left Arrow 
0001001 9 $09 HT Horizontal tab Control-I I I 

or Tab 
0001010 10 $0A LF Line feed Control-] J J 

or Down Arrow 
0001011 11 $OB VT Vertical tab Control-K K K 

or Up Arrow 
0001100 12 $0C FF Form feed Control-L L L 
0001101 13 $OD CR Carriage return Control-M M M 

or Return 
oo'o1110 14 $OE so Shift out Control-N N N 
0001111 15 $OF SI Shift in Control-0 0 0 
0010000 16 $10 DLE Data link escape Control-P p p 

0010001 17 $11 DCl Device control 1 Control-Q Q Q 
0010010 18 $12 DC2 Device control 2 Control-R R R 
0010011 19 $13 DC3 Device control 3 Control-S s s 
0010100 20 $14 DC4 Device control 4 Control-T T T 
0010101 21 $15 NAK Neg. acknowledge Control-U u u 

or Right Arrow 
0010110 22 $16 SYN Synchronization Control-V v v 
0010111 23 $17 ETB End of text blk. Control-W w w 
0011000 24 $18 CAN Cancel Control-X x x 
0011001 25 $19 EM End of medium Control-Y y y 

0011010 26 $IA SUB Substitute Control-Z z z 
0011011 27 $1B ESC Escape Control-[ [ [ 

or Escape 
0011100 28 $1C FS File separator Control-\ \ \ 
0011101 29 $1D GS Group separator Control-] ] ] 
0011110 30 $1E RS Record separator Control-A A A 

0011111 31 $1F us Unit separator Control-_ 

244 Appendix E: Conversion Tables 



Table E-7 
Special characters, high bit off 

Binary Dec Hex ASCII char Interpretation What to type Pri Alt 

0100000 32 $20 SP Space Space bar 
0100001 33 $21 
0100010 34 $22 
0100011 35 $23 # # # 
0100100 36 $24 $ $ $ 
0100101 37 $25 % % % 
0100110 38 $26 & & & 

0100111 39 $27 Apostrophe 
0101000 40 $28 ( ( ( 

0101001 41 $29 ) ) ) 

0101010 42 $2A 
0101011 43 $2B + + + 
0101100 44 $2C Comma 
0101101 45 $2D Hyphen 
0101110 46 $2E Period 
0101111 47 $2F I I I 
0110000 48 $30 0 0 0 
0110001 49 $31 1 1 1 
0110010 50 $32 2 2 2 
0110011 51 $33 3 3 3 
0110100 52 $34 4 4 4 
0110101 53 $35 5 5 5 
0110110 54 $36 6 6 6 
0110111 55 $37 7 7 7 
0111000 56 $38 8 8 8 
0111001 57 $39 9 9 9 
0111010 58 $3A 
0111011 59 $3B 
0111100 60 $3C < < < 
0111101 61 $3D 
0111110 62 $3E > > > 
0111111 63 $3F ? ? 

Eight-bit code conversions 245 



Table E-8 
Uppercase characters, high bit off 

Binary Dee Hex ASCII char Interpretation What to type Prl Alt 

1000000 64 $40 @ @ • 1000001 65 $41 A A 0 
1000010 66 $42 B B "" 1000011 67 $43 c c x 
1000100 68 $44 D D v 
1000101 69 $45 E E " 1000110 70 $46 F F ~ 
1000111 71 $47 G G -
1001000 72 $48 H H f-
1001001 73 $49 I I 
1001010 74 $4A J J -1-
1001011 75 $4B K K 1' 
1001100 76 $4C L L 
1001101 77 $4D M M +1 
1001110 78 $4E N N • 1001111 79 $4F 0 0 ~ 
1010000 80 $50 p p ~ 
1010001 81 $51 Q Q .. 
1010010 82 $52 R R ....: 

' 
1010011 83 $53 s s 
1010100 84 $54 T T L 
1010101 85 $55 u u ~ 

1010110 86 $56 v v • 1010111 87 $57 w w • 1011000 88 $58 x x c 
1011001 89 $59 y y ::::l 

1011010 90 $5A z z I 
1011011 91 $5B [ Opening bracket [ • 1011100 92 $5C \ Reverse slant \ 
1011101 93 $50 J Closing bracket J ..IL ,I"' 

1011110 94 $5E A Caret A :!] 
1011111 95 $5F Underline I 

246 Appendix E: Conversion Tables 



Table E-9 
Lowercase characters. high bit off 

Binary Dec Hex ASCII char Interpretation What to type Prl Alt 

1100000 96 $60 Grave accent 
1100001 97 $61 a a 
1100010 98 $62 b b 
1100011 99 $63 c # c 
1100100 100 $64 d $ d 
1100101 101 $65 e % e 
1100110 102 $66 f & f 
1100111 103 $67 g g 
1101000 104 $68 h ( h 
1101001 105 $69 ) i 
1101010 lo6 $6A j " j 
1101011 107 $6B k + k 
1101100 108 $6C l I 
1101101 109 $6D m m 
1101110 110 $6E n n 
1101111 111 $6F 0 I 0 

1110000 112 $70 p 0 p 
1110001 113 $71 q 1 <i 
1110010 114 $72 r 2 r 
1110011 115 $73 s 3 s 
1110100 116 $74 t 4 t 
1110101 117 $75 u 5 u 
1110110 118 $76 v 6 v -· 
1110111 119 $77 w 7 w 
1111000 120 $78 x 8 x 
1111001 121 $79 y 9 y 
1111010 122 $7A z z 
1111011 123 $7B { Opening brace ( 
1111100 124 $7C I Vertical line < I 
1111101 125 $7D } Closing brace } 
1111110 126 $7E \I\ Overline (tilde) > 
1111111 127 $7F DEL Delete/rubout ? DEL 

Eight-bit code conversions 247 



Table E-10 
Control characters. high bit on 

Binary Dec Hex ASCII char Interpretation What to type Pri Alt 

10000000 128 $80 NUL Blank (null) Control-@ @ @ 

10000001 129 $81 SOH Start of header Control-A A A 
10000010 130 $82 STX Start of text Control-B B B 
10000011 131 $83 ETX End of text Control-C c c 
10000100 132 $84 EQT End of transm. Control-D D D 
10000101 133 $85 ENQ Enquiry Control-E E E 
10000110 134 $86 ACK Acknowledge Control-F F F 
10000111 135 $87 BEL Bell Control-G G G 
10001000 136 $88 BS Backspace Control~H H H 

or Left Arrow 
10001001 137 $89 HT Horizontal tab Control-I 

or Tab 
10001010 138 $8A . LF Line feed Control-] J J 

or Down Arrow 
10001011 139 $8B VT Vertical tab Control-K K K 

or Up Arrow 
10001100 140 $8C FF Form feed Control-L L L 
10001101 141 $80 CR Carriage return Control-M M M 

or Return 
10001110 142 $8E so Shift out Control-N N N 
10001111 143 $8F SI Shift in Control-0 0 0 
10oioooo 144 $90 OLE Data liilk escape Control-P p p 

10010001 145 $91 DCl Device control 1 Control-Q Q Q 
10010010 146 $92 DC2 Device control 2 Control-R R R 
10010011 147 $93 DC3 Device control 3 Control-S s s 
10010100 148 $94 DC4 Device control 4 Control-T T T 
10010101 149 $95 NAK Neg. acknowledge Control-U u u 

or Right Arrow 
10010110 150 $96 SYN Synchronization Control-V v v 
10010111 151 $97 ETB End of text blk. Control-W w w 
10011000 152 $98 CAN Cancel Control-X x x 
10011001 153 $99 EM End of medium Control-Y y y 

10011010 154 $9A SUB Substitute Control-Z z z 
10011011 155 $9B ESC Escape Control-[ [ [ 

cir Escape 
10011100 156 $9C FS File separator Control-\ \ \ 
10011101 157 $9D GS Group separator Control-] ] I 
10011110 158 $9E RS Record separator Control-A A A 
10011111 159 $9F us Unit separator Control-

248 Appendix E: Conversion Tables 



Table E-11 
Special characters. high bit on 

Binary Dec Hex ASCII char Interpretation What to type Pri Alt 

10100000 16o $AO SP Space Space bar 
10100001 161 $Al 
10100010 162 $A2 
10100011 163 $A3 # # # 

10100100 164 $A4 $ $ $ 
10100101 165 $A5 % % % 
10100110 166 $A6 & & & 
10100111 167 $A7 Apostrophe 
10101000 168 $A8 ( ( ( 

10101001 169 $A9 ) ) ) 

10101010 170 $AA 
10101011 171 $AB + + + 
10101100 172 $AC Comma 
10101101 173 $AD Hyphen 
1010~110 174 $AE Period 
10101111 175 $AF I I I 
10110000 176 $BO 0 0 0 
10110001 177 $Bl 1 1 1 
10110010 178 $B2 2 2 2 
10110011 179 $B3 3 3 3 
10110100 180 $B4 4 4 4 
10110101 181 $B5 5 5 5 
10110110 182 $B6 6 6 6 
10110111 183 $B7 7 7 7 
10111000 184 $B8 8 8 8 
10111001 185 $B9 9 9 9 
10111010 186 $BA 
10111011 187 $BB 
10111100 188 $BC < < < 
10111101 189 $BD 
10111110 190 $BE > > > 
10111111 191 $BF ? ? ? 

Eight-bit code conversions 249 



Table E-12 
Uppercase characters. high bit on 

Binary Dec Hex ASCII char Interpretation What to type Prl Alt 

11000000 192 $CO @ @ @ 

11000001 193 $Cl A A A 
11000010 194 $C2 B B B 
11000011 195 $C3 c c c 
11000100 196 $C4 D D D 
11000101 197 $CS E E E 
11000110 198 $C6 F F F 
11000111 199 $C7 G G G 
11001000 200 $CB H H - H 
11001001 201 $C9 I I I 
11001010 202 $CA J J J 
11001011 203 $CB K K K 
11001100 204 $CC L L L 
11001101 205 $CD M M M 
11001110 2o6 $CE N N N 
11001111 207 $CF 0 0 0 
11010000 208 $DO p p p 

11010001 209 $Dl Q Q Q 
11010010 210 $D2 R R R 
11010011 211 $D3 s s s 
11010100 212 $D4 T T T 
11010101 213 $DS u u u 
11010110 214 $D6 v v v 
11010111 215 $D7 w w w 
11011000 216 $DB x x x 
11011001 217 $D9 y y y 

11011010 21B $DA z z z 
11011011 219 $DB [ Opening bracket [ [ 

11011100 220 $DC \ Reverse slant \ \ 
11011101 221 $DD 1 Closing bracket l l 
11011110 222 $DE A Caret A A 

11011111 223 $DF Underline 

250 Appendix E: Conversion Tables 



Table E-13 
Lowercase characters. high bit on 

Binary Dec Hex ASCII char Interpretation What to type Prl Alt 

11100000 224 $EO Grave accent 
11100001 225 $El a a a 
11100010 226 $E2 b b b 
11100011 227 $E3 c c c 
11100100 228 $E4 d d d 
11100101 229 $E5 e e e 
11100110 230 $E6 f f f 
11100111 231 $E7 g g g 
11101000 232 $E8 h h h 
11101001 233 $E9 
11101010 234 $EA j j j 
11101011 235 $EB k k k 
11101100 236 $EC 1 1 1 
11101101 237 $ED m m m 
11101110 238 $EE n n n 
11101111 239 $EF 0 0 0 

11110000 240 $PO p p p 
11110001 241 $Fl q q q 
11110010 242 $F2 r r r 
11110011 243 $F3 s s s 
11110100 244 $F4 t t t 
11110101 245 $F5 u u u 
11110110 246 $F6 v v v 
11110111 247 $F7 w w w 
11111000 248 $F8 x x x 
11111001 249 $F9 y y y 
11111010 250 $FA z z z 
11111011 251 $FB { Opening brace { { 

11111100 252 $FC I Vertical line I I 
11111101 253 $FD } Closing brace } } 

11111110 254 $FE Overline (tilde) 
11111111 255 $FF DEL Delete/rubout DELETE DEL DEL 

Eight-bit code conversions 251 



Appendix F 

Frequently Used Tables 

This appendix contains copies of the tables you will need to refer to 
frequently; for example, ASCII codes and soft-switch location. The 
original table number is given in a footnote to the table. 

Table F-1· 
Keys and ASCII codes 

Normal Control Shift Both 

Key Code Char Code Char Code Char Code Char 

Delete 7F DEL 7F DEL 7F DEL 7F DEL 
Left Arrow 08 BS 08 BS 08 BS 08 BS 
Tab 09 HT 09 HT 09 HT 09 HT 
Down Arrow OA LP OA LP OA LP OA LP 
Up Arrow OB VT OB VT OB VT OB VT 
Return OD CR OD CR OD CR OD CR 
Right Arrow 15 NAK 15 NAK 15 NAK 15 NAK 
Escape 1B ESC 1B ESC 1B ESC 1B ESC 
Space 20 SP 20 SP 20 SP 20 SP 
I II 27 27 22 22 
,< 2C 2C 3C < 3C < 

2D lF us SF lF us 
. > 2E 2E 3E > 3E > 
I ? 2F I 2F I 3F ? 3F 
O) 30 0 30 0 29 ) 29 ) 

1 ! 31 1 31 1 21 21 
2@ 32 2 00 NUL 40 @ 00 NUL 
3# 33 3 33 3 23 # 23 # 
4$ 34 4 34 4 24 $ 24 $ 

252 



Table F-1 (continued)* 
Keys and ASCII codes 

Normal Control Shift Both 

Key Code Char Code Char Code Char Code Char 

5% 35 5 35 5 25 % 25 % 
6 I\ 36 6 1E RS 5E I\ 1E RS 
7& 37 7 37 7 26 & 26 & 
8 • 38 8 38 8 2A 2A 
9( 39 9 39 9 28 ( 28 ( 
, . 3B 3B 3A 3A 
= + 3D 3D 2B + 2B + 
[ { 5B [ 1B ESC 7B { 1B ESC 
\ I 5C \ lC FS 7C I lC FS 
] } 5D ] lD GS 7D } lD GS 

60 60 7E 7E 
A 61 a 01 SOH 41 A 01 SOH 
B 62 b 02 STX 42 B 02 STX 
c 63 c 03 ETX 43 c 03 ETX 
D 64 d 04 EOT 44 D 04 EOT 
E 65 e 05 ENQ 45 E 05 ENQ 
F 66 f 06 ACK 46 F 06 ACK 
G 67 g 07 BEL 47 G 07 BEL 
H 68 h 08 BS 48 H 08 BS 
I 69 09 HT 49 I 09 HT 
J 6A j OA LF 4A J OA LF 
K 6B k OB VT 4B K OB VT 
L 6C I oc FF 4C L oc FF 
M 6D m OD CR 4D M OD CR 
N 6E n OE so 4E N OE so 
0 6F 0 OF SI 4F 0 OF SI 
p 70 p 10 DLE 50 p 10 DLE 
Q 71 q 11 DCl 51 Q 11 DCl 
R 72 r 12 DC2 52 R 12 DC2 
s 73 s 13 DC3 53 s 13 DC3 
T 74 t 14 DC4 54 T 14 DC4 
u 75 u 15 NAK 55 u 15 NAK 
v 76 v 16 SYN 56 v 16 SYN 
w 77 w 17 ETB 57 w 17 ETB 
x 78 x 18 CAN 58 x 18 CAN 
y 79 y 19 EM 59 y 19 EM 
z 7A z lA SUB 5A z lA SUB 

•Table 2-2 
Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer to Table E-3. 

Appendix F: Frequently Used Tables 253 



Table F-2· 
Keyboard memory locations 

Location 

Hex Decimal Description 

$COOO 
$C010 

49152 -16384 Keyboard data and strobe 
49168 -16368 Any-key-down flag and dear-strobe switch 

•Table 2-1 

Table F-3· 
Video display specifications 

Display modes 

Text capacity 

Character set 

Display formats 

Low-resolution 
graphics 

High-resolution 
graphics 

Double 
high-resolution 

graphics 

•Table 2-3 

254 Appendix F: Frequently Used Tables 

40-column text; map: Figure 2-3 
80-column text; map: Figure 2-4 
Low-resolution color graphics; map: Figure 2-8 
High-resolution color graphics; map: Figure 2-9 
Double high-res color graphics; map: Figure 2-10 

24 lines by 80 columns (character positions) 

96 ASCII characters (uppercase and lowercase) 

Normal, inverse, flashing, MouseText (Table 2-4) 

16 colors (Table 2-5), 40 horizontal by 48 
vertical; map: Figure 2-8 

6 colors (Table 2-6), 140 horizontal by 192 
vertical (restricted) 
Black-and-white: 280 horizontal by 192 vertical; 
map: Figure 2-9 

16 colors (Table 2-7), 140 horizontal by 192 
vertical (no restrictions) 
Black-and-white: 560 horizontal by 192 vertical; 
map: Figure 2-10 



Table F-4· 
Double high-resolution graphics colors 

Repeated 
Color abO mbl ab2 mb3 bit pattern 

Black $00 $00 $00 $00 0000 
Magenta t~~ $11 $22 $44 0001 
Brown $08 $11 $22 0010 
Orange $4C $19 $33 $66 0011 
Dark green $22 $44 $08 $11 0100 
Gray 1 $2A $55 $2A $55 0101 
Green $66 $4C $19 $33 0110 
Yellow $6E $5D $3B $77 0111 
Dark blue $11 $22 $44 $08 1000 
Purple $19 $33 $66 $4C 1001 
Gray2 $55 $2A $55 $2A 1010 
Pink $5D $3B $77 $6E 1011 
Medium blue $33 $66 $4C $19 1100 
Light blue $3B $77 $6E $5D 1101 
Aqua $77 $6E $5D $3B 1110 
White $7F $7F $7F $7F 1111 

•Table 2-7 

Table F-s· 
Video display page locations 

Lowest address Highest address 
Display 

Display mode page Hex i;>ec Hex Dec 

40-column text, 1 $0400 1024 $07FF 2047 
low-resolution 2t $0800 2048 $0BFF 3071 
graphics 

80-column text 1 $0400 1024 $07FF 2047 
2t $0800 2048 $0BFF 3071 

High-resolution 1 $2000 8192 $3FFF 16383 
graphics 2 $4000 16384 $5FFF 24575 

Double high-
1 * $2000 8192 $3FFF 16383 

resolution 2; $4000 16384 $5FFF 24575 
graphics 

•Table 2-8 
t This is not supported by firmware; for instructions on how to switch 

pages, refer to the section "Display Mode Switching" in Chapter 2. 
; See the section "Double High-Resolution Graphics" in Chapter 2. 

Appendix F: Frequently Used Tables 255 



Table F-6· 
Display soft switches 

Name Action Hex Function 

ALTCi-IAR w $COOE Off: display text using 
primary character set 

ALTCHAR w $COOP On: display text using 
alternate character set 

RDALTCHAR R7 $COIE Read ALTCHAR switch 
(1 =on) 

BOCOL w $COOC Off: di~play 40 columns 

80COL w $COOD On: display 80 columns 

RD80COL R7 $COIF Read 80COL switch (1 = on) 

80STORE w $COOO Off: cause PAGE2 on to 
select auxiliary RAM 

80STORE w $COOI On: allow PAGE2 to switch 
main RAM areas 

RD80STORE R7 $COI8 Read 80STORE switch 
(1 =on) 

PAGE2 R/W $C054 Off: select Page I 

PAGE2 R/W $C055 On: select Page 2 or, if 
80STORE on, Page I in 
auxiliary memory 

RDPAGE2 R7 $COIC Read PAGE2 switch (1 =on) 

TEXT R/W $C050 Off: display graphics or, if 
MixED on, mixed 

TEXT R/W $C05I On: display text 

RD TEXT R7 $COIA Read TEXT switch (1 = on) 

MIXED R/W $C052 Off: display only text or only 
graphics 

MIXED R/W $C053 On: if TEXT off, display text 
and graphics 

RD MIXED R7 $C01B Read MIXED switch (1 = on} 

HIRES R/W $C056 Off: if TEXT off, display low-
resolution graphics 

256 Appendix F: Frequently Used Tables 



Table F-6· (continued) 
Display soft switches 

Name Action Hex Function 

HIRES R/W $COS7 On: if TEXT off, display 
high-resolution or, if 
DHIRES on, double high-
resolution graphics 

RD HIRES R7 $C01D Read HIRES switch (1 = on) 

IOUDIS w $C07E On: disable IOU access for 
addresses $COSS to $COSF; 
enable access to DHIRES 
switcht 

IOUDIS w $C07F Off: enable IOU access for 
addresses $COSS to $COSF; 
disable access to DHIRES 
switcht 

RDIOUDIS R7 $C07E Read IOUDIS switch (1 = off)* 

DHIRES R/W $COSE On: if IOUDIS on, turn on 
double high-resolution 

DHIRES R/W $COSF Off: if IOUDIS on, turn off 
double high resolution 

RDDHIRES R7 $C07F Read DHIRES switch 
(1 =on)* 

VBL R7 $C019 Vertical blanking 
•Table 2-9 
t The firmware normally leaves IOUDIS on. See also t. * Reading or writing any address in the range $C070-$C07F also triggers 

the paddle timer and resets VBLINT (Chapter 7). 

Note: W means write anything to, the location, R means read the location, 
R!Wmeans read or write, and R7means read the location and check bit 7. 

Table F-7· 
Monitor firmware routines 

Locatlono 

$C30S 

$C307 

Name 

BASICIN 

BASICO UT 

Description 

With SO-column firmware active, 
displays solid, blinking cursor; 
accepts character from keyboard 

Displays a character on the screen; 
used when the 80-column firmware is 
active (Chapter 3) 

Appendix F: Frequently Used Tables 257 



Table F-7* (continued) 
Monitor firmware routines 

locatlonO Name Description 

$FC9C CLREOL Clears to end of line from current 
cursor position 

$FC9E CLEOLZ Clears to end of line using contents of 
Y register as cursor position 

$FC42 CLREOP Clears to bottom of window 

$F832 CLRSCR Clears the low-resolution screen 

$F836 CLRTOP Clears top 40 lines of low-resolution 
screen 

$FDED COUT Calls output routine whose address is 
stored in CSW (normally COUTl, 
Chapter 3). 

$FDFO COUTl Displays a character on the screen 
(Chapter 3) 

$FD8E CROUT Generates a carriage return character 

$FD8B CROUTl Clears to end of line, then generates a 
carriage return character 

$FD6A GETLN Displays the prompt character; 
accepts a string of characters by 
means of RDKEY 

$F819 HLINE Draws a horizontal line of blocks 

$FC58 HOME Clears the window and puts cursor in 
upper-left corner of window 

$FD1B KE YIN With 80-column firmware inactive, 
displays checkerboard cursor; 
accepts character from keyboard 

$F800 PLOT Plots a single low-resolution block on 
the screen 

$F94A PRBL2 Sends 1 to 256 blank spaces to the 
output device 

$FDDA PR BYTE Prints a hexadecimal byte 

$FF2D PRERR Sends ERR and Control-G to the 
output device 

258 Appendix F: Frequently Used Tables 



Table F-7• (continued) 
Monitor firmware routines 

Locatlono 

$FDE3 

$F941 

$FDOC 

$F871 

$F864 

$FC24 

$F828 

• Table 3-1 

Table F-sa• 

Name 

PRHEX 

PRNTAX 

RD KEY 

SCRN 

SETCOL 

VTABZ 

VLINE 

Description 

Prints 4 bits as a hexadecimal number 

Prints contents of A and X in 
hexadecimal 

Displays blinking cursor; goes to 
standard input routine, normally 
KEYIN or BASICIN 

Reads color value of a low-resolution 
block 

Sets the color for plotting in low 
resolution 

Sets cursor vertical position 

Draws a vertical line of low-resolution 
blocks 

Control characters. 80-column firmware off 

Control 
character 

Control-G 

Control-H 

Control-] 

Control-M 

•Table 3-3a 

ASCII 
name 

BEL 

BS 

LF 

CR 

Apple lie 
name 

Bell 

Backspace 

Line feed 

Return 

Action taken by COUTl 

Produces a 1000 Hz tone 
for 0.1 second 

Moves cursor position one 
space to the left; from left 
edge of window, moves to 
right end of line above 

Moves cursor position 
down to next line in 
window, scrolls if needed 

Moves cursor position to 
left end of next line in 
window, scrolls if needed 

Appendix F: Frequently Used Tables 259 
' 



Table F-8b* 
Control characters. 80-column firmware on 

Control ASCII Apple lie 
character name name Action taken by BASICOUT 

Control-G BEL Bell Produces a 1000 Hz tone 
for 0.1 second 

Control-H BS Backspace Moves cursor position one 
space to the left; from left 
edge of window, moves to 
right end of line above 

Control-] LF Line feed Moves cursor position 
down to next line in 
window; scrolls if needed 

Control-Kt VT Clear EOS Clears from cursor 
position to the end of the 
screen 

Control-Lt FF Home Moves cursor position to 
and clear upper-left corner of 

window and clears window 

Control-M CR Return Moves cursor position to 
left end of next line in 
window, scrolls if needed 

Control-Nt so Normal Sets display format 
normal 

Control-Qt SI Inverse Sets display format 
inverse 

Control-Qt DCl 40-column Sets display to 40-column 

Control-Rt DC2 80-column Sets display to 80-column 

Control-S* DC3 Stop-list Stops listing characters on 
the display until another 
key is pressed 

Control-Ut NAK Quit Deactivates 80-column 
video firmware 

Control-Vt SYN Scroll Scrolls the display down 
one line, leaving the 
cursor in the current 
position 

Control-Wt ETB Scroll-up Scrolls the display up one 
line, leaving the cursor in 

260 Appendix F: Frequently Used Tables the current position 



Table F-9· 
Text format control values 

Mask value 

Dec Hex Display format 

255 $FF Normal, uppercase, 
and lowercase 

127 $7F Flashing, uppercase, 
and symbols 

63 $3F Inverse, uppercase, 
and lowercase 

•Table 3-5 
Note: These mask values apply 
only to the primary character set 
(see text). 

Table F-&b· (continued) 
Control characters. 80-column firmware on 

Control 
character 

Control-X 

Control-Yt 

Control-Zt 

Control-[ 

Control-\t 

Control-]t 

Control-_ 

•Table 3-3b 

ASCII 
name 

CAN 

EM 

SUB 

ESC 

FS 

GS 

us 

Apple lie 
name 

Disable 
MouseText 

Home 

Clear line 

Enable 
MouseText 

Forward 
space 

Clear EOL 

Up 

Action taken by BASICOUT 

Disables MouseText 
character display; use 
inverse uppercase 

Moves cursor position to 
upper-left corner of 
window (but doesn't 
clear) 

Clears the line the cursor 
position is on 

Maps inverse 
uppercase characters to 
MouseText characters 

Moves cursor position one 
space to the right, from 
right edge of window, 
moves it to left end of line 
below 

Clears from the current 
cursor position to the end 
of the line (that is, to the 
right edge of the window) 

Moves cursor up a line, no 
scroll 

t Doesn't work from the keyboard 
; Only works from the keyboard. 

Table F-10· 
Escape codes 

Escape code 

Escape@ 

Escape A or a 

Escape B orb 

Function 

Clears window and homes cursor 
(places it in upper-left corner of 
screen), then exits from escape mode 

Moves cursor right one line; exits from 
escape mode 

Moves cursor left one line; exits from 
escape mode 

Appendix F: Frequently Used Tables 261 



Table F-10· (continued) 
Escape codes 

Escape code 

Escape C or c 

Escape Dor d 

Escape E ore 

Escape For f 

Escape I or i 
or Escape Up Arrow 

Escape] or j 
or Escape Left Arrow 

Escape K ork 
or Escape Right Arrow 

Escape Mor m 
or Escape Down Arrow 

Escape 4 

Escape 8 

Escape Control-D 

Escape Control-E 

Escape Control-Q 

•Table 3-6 

262 Appendix F: Frequently Used Tables 

Function 

Moves cursor down one line; exits from 
escape mode 

Moves cursor up one line; exits from 
escape mode 

Clears to end of line; exits from escape 
mode 

Clears to bottom of window; exits from 
escape mode 

Moves the cursor up one line; 
remains in escape mode (see text) 

Moves the cursor left one space; 
remains in escape mode (see text) 

Moves the cursor right one 
space; remains in escape mode (see 
text) 

Moves the cursor down one 
line; remains in escape mode (see text) 

If 80-column firmware is active, switches 
to 40-column mode; sets links to 
BASICIN and BASICOUT; restores 
normal window size; exits from escape 
mode 

If 80-column firmware is active, switches 
to 80-column mode; sets links to 
BASICIN and BASICOUT; restores 
normal window size; exits from escape 
mode 

Disables control characters; only 
carriage return, line feed, BELL, and 
backspace have an effect when printed 

Reactivates control characters 

If 80-column firmware is active, 
deactivates 80-column firmware; sets 
links to KEYIN and COUTl; restores 
normal window size; exits from escape 
mode 



Table F-11 • 
Pascal video control functions 

Control- Hex Function performed 

E ore $05 Turns cursor on (enables cursor display) 

For f $06 Turns cursor off (disables cursor display) 

Gorg $07 Sounds bell (beeps) 

H orh $08 Moves cursor left one column. If cursor was at 
beginning of line, moves it to end of 
preceding line 

J or j $0A Moves cursor down one row; scrolls if needed 

Kork $OB Clears to end of screen 

Lor l $0C Clears screen; moves cursor to upper-left of 
screen 

Morm $OD Moves cursor to column 0 

Norn $OE Displays subsequent characters in normal 
video (Characters already on display are 
unaffected.) 

0 oro $OF Displays subsequent characters in inverse 
video (Characters already on display are 
unaffected.) 

Vorv $16 Scrolls screen up one line; clears bottom line 

Worw $17 Scrolls screen down one line; clears top line 

Yory $19 Moves cursor to upper-left (home) position 
on screen 

Z orz $1A Clears entire line that cursor is on 

I or\ $1C Moves cursor right one column; if at end of 
line, does Control-M 

} or] $1D Clears to end of the line the cursor is on, 
including current cursor position; does not 
move cursor 

A or6 $1E GOTOxy: initiates a GOTOxy sequence; 
interprets the next two characters as x+32 and 
y+32, respectively 

$1F If not at top of screen, moves cursor up one 
line 

•Table 3-10 

Appendix F: Frequently Used Tables 263 



Table F-12· 
Bank select switches 

Name Action Hex Function 

R $C080 Read RAM; no write; use 
$DOOO bank 2. 

RR $C081 Read ROM; write RAM; use 
$0000 bank 2. 

R $C082 Read ROM; no write; use 
$DOOO bank 2. 

RR $C083 Read and write RAM; use 
$0000 bank 2. 

R $C088 Read RAM; no write; use 
$DOOO bank 1. 

RR $C089 Read ROM; write RAM; use 
$DOOO bank 1. 

R $C08A Read ROM; no write; use 
$DOOO bank 1. 

RR $C08B Read and write RAM; use 
$0000 bank 1. 

RDBNK2 R7 $C011 Read whether $0000 
bank 2 (1) or bank 1 (0). 

ROLCRAM R7 $C012 Reading RAM (1) or ROM (O). 

ALTZP w $C008 Off: use main bank, page 0 
and page 1. 

ALTZP w $C009 On: use auxiliary bank, page 0 
and page 1. 

ROALTZP R7 $C016 Read whether auxiliary (1) or 
main (0) bank. 

•Table 4-6 
Note: R means read the location, W means write anything to the location, 
RIW means read or write, and R7 means read the location and then check 
bit 7. 

264 Appendix F: Frequently Used Tables 



Table F-13· 
Auxiliary-memory select switches 

Location 

Name Function Hex Dec Ima I Notes 

RAMRD Read auxiliary memory $C003 49155 -16381 Write 
Read main memory $C002 49154 -16382 Write 
Read RAMRD switch $C013 49171 -16365 Read 

RAMWRT Write auxiliary memory $COOS 49157 -16379 Write 
Write main memory $C004 49156 -16380 Write 
Read RAMWRT switch $C014 49172 -16354 Read 

80STORE On: access display page $C001 49153 -16383 Write 
Off: use RAMRD, RAMWRT $COOO 49152 -16384 Write 
Read 80STORE switch $C018 49176 -163&> Read 

PAGE2 Page 2 on (aux. memory) $C055 49237 -16299 t 
Page 2 off (main memory) $C054 49236 ...:.16300 t 
Read PAGE2 switch $co1c 49180 -16356 Read 

HIRES On: access high-res pages $C057 49239 -16297 * Off: use RAMRD, RAMWRT $C056 49238 -16298 * Read HIRES switch $C01D 49181 -16355 Read 

ALTZP Aux. stack & zero page $C009 49161 -16373 Write 
Main stack & zero page $COOS 4916o -16374 Write 
Read AL TZP switch $C016 49174 -16352 Read 

• Table 4-7 
t When SOSTORE is on, the PAGE2 switch selects main or auxiliary display memory. 
*When SOSTORE is on, the HIRES switch enables you to use the PAGE2 switch to switch between the high

resolution Page 1 area in main memory or auxiliary memory. 

Table F-14• 
48K RAM transfer routines 

Name Action Hex 

AUXMOVE JSR $C311 

XFER ]MP $C314 

•Table 4-8 

Function 

Moves data blocks between 
main and auxiliary 
48K memory 

Transfers program control 
between main and auxiliary 
48K memory 

Appendix F: Frequently Used Tables 265 



Table F-1s· 
1/0 memory switches 

Location 

Name Function Hex Decimal · Notes 

SLOTC3ROM Slot ROM at $C300 $COOB 49163 -16373 Write 
Internal ROM at $C300 $COOA 49162 -16374 Write 
Read SLOTC3ROM switch $C017 49175 -16361 Read 

SLOTCXROM Slot ROM at $Cx00 $C006 49159 -16377 Write 
Internal ROM at $Cx00 $C007 49158 -16378 Write 
Read SLOTCXROM switch $C015 49173 -16363 Read 

•Table 6-5 

Table F-16• 
1/0 routine offsets and registers under Pascal 1.1 protocol 

Address Offset for X register Y register A register 

$CsOD Initialization 
On entry $Cs $s0 
On exit Error code (unchanged) (unchanged) 

$CsOE Read 
On entry $Cs $s0 
On exit Error code (unchanged) Character read 

$CsOF Write 
On entry $Cs $s0 Char. to write 
On exit Error code (unchanged) (unchanged) 

$Cs10 Status 
On entry $Cs $s0 Request (0 or 1) 
On exit Error code (changed) (unchanged) 

•Table 6-7 

266 Appendix F: Frequently Used Tables 



Appendix G 

Using an 80-Column Text Card 

This appendix explains how to use 80-column text cards with high
level languages. Information about using 80-column text cards with 
assembly-language programs through the Apple Ile Monitor 
firmware is found in Chapter 3 of this manual. The information in 
this appendix applies to the Apple Ile 80-Column Text Card and the 
Apple Ile Extended 80-Column Text Card. 

If you are using Applesoft, ProDOS, or DOS you can choose to 
leave the 80-column text card inactive after installing it. You will 
want to do this when running software that does not take advantage 
of the 80-column display capability. 

The startup procedure for displaying 80 columns of text on your 
Apple Ile depends on which operating system you plan to use. 
Starting up the system with Apple II Pascal or CP /M is very easy; the 
operating system does it for you. The procedures for starting up with 
ProDOS or DOS 3.3 are slightly more complicated, but not 
difficult. 

Starting up with Pascal or CP /M 
Pascal programmers don't have to activate the text card because 
Pascal does it for them. If you use the Pascal language or the CP /M 
operating system, displaying 80 columns of text is automatic once 
you've installed the card. Simply start up your system with any 
Pascal or CP/M startup disk. 

267 



Refer to the operating system 
reference manual for your 
version of Apple Pascal for more 
information. 

•> CPIM: Control Program for Microprocessors is a trademark of 
Digital Research. To use the CP/M operating system with your 
Apple Ile, make sure the SOFfCARD by Microsoft or the 
Z-Engine by Advanced Logic Systems is correctly installed 
before you start up the computer. 

+ Coprocessor cards and tnterrupts: Some coprocessor cards that 
were designed for use in the Apple II Plus may not work with an 
Apple Ile without some modification. There could be problems 
if you want to use interrupts on the Apple Ile. If you are having 
problems with a coprocessor card, check with the card's 
manufacturer for their recommendations. 

When using Apple II Pascal 1.1, you'll probably want to run the 
program SETUP to make the Up Arrow and Down Arrow keys 
functional. SETIJP is a self-documenting program on the Pascal disk 
APPLE3. Pascal versions 1.2 and later are already configured to use 
the Up Arrow and Down Arrow keys. 

Starting up with ProDOS or DOS 3.3 
ProDOS and DOS 3.3 both look for a startup program on the startup 
(boot) disk as soon as the operating system has been loaded and 
begins executing. If the operating system finds the program, named 
STARTIJP on a ProDOS disk and usually HELLO on a DOS 3.3 disk, 
it will execute the program. 

You can write a customized startup program that will set up the 80-
column text card in any state you need. Just be sure it is on your 
startup disk and has the startup filename. 

Here is a sample Applesoft startup program that works with both 
ProDOS and DOS 3.3: 

10 HOME:D$=CHR$(4) 
20 PRINT D$;"PRl3" 
30 END 

You can do whatever you wish with the program from line 20 on. 
Note that the screen will have switched to 80-column text mode after 
line 20 . 

+ By the way: If you arrange to have the card active 
automatically, you will still, of course, be able to switch 
into 40-column mode. 

268 Appendix G: Using an 80-Column Text Card 



Using the GET Command 
The presence of an active 80-column text card in the Ile requires 
that BASIC programmers use some alternative to Applesoft's INPUT 
command if their programs are to be userproof. Applesoft 
programmers should use either the GET command or the RDKEY 
or GETLN subroutines. 

This is because the escape sequences used to switch back and forth 
between modes or to deactivate the card sometimes make it 
necessary to accept escape sequences in INPUT mode when using an 
80-column card. Because the program accepts escape sequences 
typed from the keyboard, your program will not be userproof 
against accidental sequences typed in response to an INPUT 
command. 

To get around this problem, you can use the GET command 
instead. The program does not read escape sequences typed from 
the keyboard in response to a GET command. This means that your 
users can err in their responses without endangering the display. 

When to switch modes 
versus when to deactivate 
When using BASIC, deactivate the text card whenever a previous 
(BASIC) program has left the card active Oeaving a solid cursor on 
the screen) or whenever you want to send output to a peripheral 
device. 

Switch back and forth between 40-column and 80-column displays 
for visual appeal. For full use of the control characters described 
later, your card must be active, although it can display in either 40-
column or 80-column mode. 

Original lie Tabbing In Applesoft: You must switch to a 40-column display to 
use Applesoft comma tabbing or the HTAB command. 

When to switch modes versus when to deactivate 269 



Display features with the text card 
With an active 80-column card you can issue BASIC and PRODOS 
commands in lowercase characters. You can also issue commands 
in lowercase from the keyboard, that is, in immediate mode. This is 
particularly convenient because REM statements and data within 
quotation marks remain in lowercase as they were typed. 

If you are using DOS 3.3, you must issue commands in uppercase 
whether or not your card is active. 

INVERSE, FLASH, NORMAL, HOME 
There are several commands you can give your computer from 
Applesoft BASIC to affect the appearance of text on the screen. All 
of these features are described in the Applesoft BASIC 
Programmer's Reference Manual. 

o INVERSE tells the computer to display black characters on a white 
background instead of the normal display of white characters on 
a black background. This command is normally only available 
for uppercase characters, but with an active 80-column text card 
it is available for uppercase and lowercase characters. 

o FLASH causes subsequently printed characters to blink quickly 
between inverse and normal characters. You can turn off the 
FLASH command by typing the NORMAL command. The FLASH 
command is normally available only with uppercase characters; 
it is not available at all while the card is active. 

o NORMAL tells the computer to turn off the INVERSE or FLASH 
command and to display subsequently printed characters 
normally. It works the same way with the card active or inactive. 

o HOME clears the screen and returns the cursor to the upper-left 
corner of the screen. Both the NORMAL HOME and INVERSE 
HOME commands are available while the card is active, but 
INVERSE HOME works a little differently when the card is active. 

+ By the way: The FLASH and INVERSE commands can be used 
to highlight important screen messages within a BASIC 
program. 

270 Appendix G: Using an 80-Column Text Card 



Important If you are using the FLASH command (which means the 80-
column text card Is Inactive) and then type PR# 3 to activate 
the card, the screen turns white as the cursor goes to the 
HOME position. Whatever you type appears In black characters 
on the white screen. If you llst or run an Applesoft BASIC 
program, some of the characters wlll appear as MouseText 
characters. To avoid this, remember to use the NORMAL or 
INVERSE command before you exit the program. 

Tabbing with the original Apple lie 
You cannot use conventional 40-column tabbing in BASIC with the 
original model Apple Ile with an 80-column display. You do not 
have to turn off your card, but you must switch out of 00-column 
mode to use the HTAB command or to use comma tabbing. 

When an original Apple Ile is displaying 80-column text, you 
should use the POKE 1403 command for horizontal tabbing in the 
right half of the screen instead of the HTAB command. 

Comma tabbing with the original Apple lie 

In BASIC you can use commas in PRINT statements to instruct the 
computer to display all or part of your output in columns. This is 
known as comma tabbing. You can use this method of tabbing as 
long as the screen is displaying 40 columns (that is, with the card 
inactive or after issuing the Escape 4 command to switch to 40-
column mode). You cannot use this method of tabbing with an 80-
column display. If you try to do so, characters will be placed in 
memory outside the screen area and may change programs or data 
in memory. 

HTAB and POKE 1403 

The VTAB (vertical tab) and HTAB (horizontal tab) statements can 
be used to place the cursor at a specific location on the screen 
before printing characters. The largest value you can use with the 
VTAB statement is 24; the largest for HTAB is 255. The VTAB 
command works just the same in an 80-column display as it does in 
a 40-column display. 

Tabbing with the original Apple lie 271 



On the original Apple Ile, the HTAB command causes the cursor to 
wrap around to the next line after it reaches the 40th column, so you 
cannot use this command to position the cursor in the last 40 
columns while the screen is displaying 80 columns. 

POKE 1403 is specifically designed to solve this problem. Using the 
POKE 1403 command allows you to tab horizontally across the 
extra 40 columns provided by the 80-column text card. 

If you want to tab past column 40 while the card is active and the 
screen is displaying 80 columns, use the following, where n is a 
number from 0 to 79: 

POKE 1403, n 

When you use the HTAB command, HTAB 1 piaces the cursor at the 
leftmost position on the screen. When you use the POKE 1403 
command, "POKE 1403, O" places the cursor at the leftmost 
position on the screen. 

Using control characters with the card 
Using BASIC with an active 80-column text card increases the 
number of functions you can perform with control characters. 
Originally control-character commands were so named because 
they were given from the keyboard by pressing the Control key in 
conjunction with another key. You can perform the same functions 
from your programs by using an equivalent control-character code. 
Commands based on these two-key combinations are called 
control-character commands even when they must be issued from 
a program. 

Control characters and their functions 
Table G-1 lists the control-character commands supported by 
BASIC with an 80-column card. The table includes the 
corresponding command code, its function, and whether a given 
command can be executed from the keyboard as well as from a 
program. 

272 Appendix G: Using an 80-Column Text Card 



Table G-1 
Control characters. 80-column firmware on 

Control ASCII Apple lie 
character name name Action taken by BASICOUT 

Control-G BEL Bell Produces a 1000 Hz tone 
for 0.1 second 

Control-H BS Backspace Moves cursor position one 
space to the left; from left 
edge of window, moves to 
right end of line above 

Control-] LF Line feed Moves cursor position 
down to next line in 
window; scrolls if needed 

Control-K* VT Clear EOS Clears from cursor 
position to the end of the 
screen 

Control-L* FF Home Moves cursor position to 
and clear upper-left corner of 

window and clears window 

Control-M CR Return Moves cursor position to 
left end of next line in 
window, scrolls if needed 

Control-N* so Normal Sets display format 
normal 

Control-o• SI Inverse Sets display format 
inverse 

Control-Q* DCl 40-column Sets display to 40-column 

Control-R* DC2 80-column Sets display to 80-column 

Control-St DC3 Stop-list Stops listing characters on 
the display until another 
key is pressed 

ControI-u• NAK Quit Deactivates 80-column 
video firmware 

Control-v• SYN Scroll Scrolls the display down 
one line, leaving the 
cursor in the current 
position 

Using control characters with the card 273 



Table G-1 (continued) 
Control characters, 80-column firmware on 

Control ASCII Apple lie 
character name name Action taken by BASICOUT 

Control-W* ETB Scroll-up Scrolls the display up one 
line, leaving the cursor in 
the current position 

Control-X CAN Disable Disables MouseText 
Mouse Text character display; use 

inverse uppercase 

Control-Y* EM Home Moves cursor position to 
upper-left corner of 
window (but doesn't 
clear) 

Control-Z* SUB Clear line Clears the line the cursor 
position is on 

Control-[ ESC Enable Maps inverse 
Mouse Text uppercase characters to 

MouseText characters 

Control-\• FS Forward Moves cursor position one 
space space to the right, from 

right edge of window, 
moves it to left end of line 
below 

Control-]* GS Clear EOL Clears from the current 
cursor position to the end 
of the line (that is, to the 
right edge of the window) 

Control-_ us Up Moves cursor up a line, no 
scroll 

• Doesn't work from the keyboard 
t Only works from the keyboard 

274 Appendix G: Using an 80-Column Text Card 



See Chapter 3 In this manual for 
a description of control
character functions. 

How to use control-character codes in programs 

To issue a control-character command from a program, use the 
ASCII decimal code that corresponds to the control character. (See 
Table G-1.) 

The following example shows how to use ASCII decimal codes in an 
Applesoft BASIC program. Type 

HOME [?] NEW 
10 PRINT CHR$(15): PRINT "MAKE HAY" 
20 PRINT CHR$(14): PRINT "WHILE THE SUN SHINES" 
RUN 

(CHR$ is the Applesoft BASIC command that signifies that a 
control-character function is to be performed.) 

You will get 

]NEW 
] 10 PRINT CHR$ (15) : PRINT "MAKE HAY" 
]20 PRINT CHR$(14): PRINT "WHILE THE SUN SHINES" 
]RUN 

MAKE HAY 
WHILE THE SUN SHINES 
l• 

The ASCII decimal codes for inverse video (Control-0) and normal 
video (Control-N) are 15 and 14. When the PRINT statements in the 
example are executed, the display switches to inverse and prints 
MAKE HAY, then switches back to a normal display and prints 
WHILE THE SUN SHINES. 

A word of caution to Pascal programmers 

Avoid writing Control-U or Control-Q to the console from a Pascal 
program. Either one puts the system into a state that will eventually 
cause Pascal to crash. 

You can't send control characters from the keyboard to the 80-
column firmware when using Pascal. The only exceptions to this 
rule are Control-M (CR) and Control-G (BEL). 

Uslng control characters with the card 275 



For more Information about the 
installation and operation of the 
SSC. see the Super Serial Card 
manual. 

The Pascal l. l firmware protocol 
is described in Chapter 6. 

276 

Appendix H 

Programming With the 
Super Serial Card 

This appendix briefly tells how to use the Apple II Super Serial Card 
(SSC) from programs and how to find the SSC through software, and 
describes the commands supported by the SSC. 

The SCC is one of the most common serial interface cards used with 
the Apple Ile, and the Apple Ilc's serial ports operate very much 
like the Super Serial Card. This similarity should make it easier for 
you to write programs for both the Apple Ile and Apple Ile. 

Locating the card 
Locations $Cs05, $Cs07, $CsOB, and $CsOC (wheres is the number 
of the slot where the SSC is installed) contain the identification 
bytes for the Super Serial Card. The identification byte's values are 

$Cs05 $38 
$Cs07 $18 
$Cs0B $01 
$CsOC $31 



Operating modes 
The Super Serial Card has two main operating modes: printer mode 
and communications mode. There is nothing you can do from 
software to change from one mode to the other because they are set 
by the position of the jumper block. 

+ Note to software developers: If you are writing software that 
depends on the SSC being in a given operating mode, make 
sure that your documentation tells the user to set up the SSC in 
the proper way. 

In printer mode, the SSC is set to send data to a printer, local 
terminal, or other serial device. In communications mode, the SSC 
is set to operate with a modem. From communications mode, the 
SSC can enter a special mode called terminal mode. In terminal 
mode the Apple Ile acts like an unintelligent terminal. 

Operating commands 
For each of the operating modes, you can control many aspects of 
data transmission such as baud rate, data format, and line feed 
generation. 

Your program can change these aspects by sending control codes 
as commands to the card. All commands are preceded by a 
command character and followed by a carriage return character 
($00). 

The command character js usually Control-I in printer mode and 
Control-A in communications mode and terminal mode. In the 
command examples in the following sections, Control-I is used 
unless the command being described is available only in 
communications mode or terminal mode. A carriage return 
character is represented by its ASCII symbol, CR. 

There are three types of command formats: 

o A number, represented by n, followed by an uppercase letter 
with no space between the characters (for example, 40 to set data 
format 4). 

o An uppercase letter by itself (for example, R to reset the SSC). 

o An uppercase letter followed by a space and then either E to 
enable or 0 to disable a feature (for example, L 0 to disable 
automatic insertion of line feed characters). 

Operating commands 277 



The allowable range of n is given in each command description that 
follows. 

The choice of enable or disable is indicated with EID. The 
underscore character ( _ ) before the E/D in commands that allow 
enable/disable is to remind you that a space is required there. 

The SSC checks only numbers and the first letters of commands and 
options. (All such letters must be uppercase.) Further letters, which 
you can add to assist your memory, have no effect on the SSC. For 
example, XOFF Enable is the same as X E. The SSC ignores invalid 
commands. 

Important The spaces In command examples are there for clarity; 
generally you will not use spaces In a command string. Where a 
space Is required In a command string, an underscore ( _) 
character will appear In the text as a reminder. 

The command character 
The normal command character is Control-I (ASCII $09) in printer 
mode, or Control-A (ASCII $01) in communications mode. If you 
want to change the command character from Control-I to Control
something else, send Control-I Control-something else. For 
example, to change the command character to Control-W, send 
Control-I Control-W. To change back, send Control-W Control-I. 
No return character is required after either of these commands. 

Here is how to do this in BASIC and Pascal: 

Applesoft BASIC: 

PRINT CHR$ (9); "new command character" 

Pascal: 

WRITELN (CHR ( 9), 'new command character') ; 

You can send the command character itself through Ll-ie SSC by 
sending it twice in a row: Control-I Control-I; no return character is 
required after this command. This special command allows you to 
transmit the command character without affecting the operation of 
the SSC, and without having to change to another command 
character and then back again later. 

278 Appendix H: Programming With the Super Serial Card 



Table H-2 
Data format selections 

n Data bits Stop bits 

0 8 1 
1 7 1 
2 6 1 
3 5 1 
4 8 2. 
5 7 2 
6 6 2 
7 5 2t 

• 1 with parity options 4 through 7 
t 11/2 with parity options 

0 through 3 

Table H-3 
Parity selections 

n Parity to use 

0,2,4, None (default value) 
or 6 

1 Odd parity (odd total 
number of ones) 

3 Even parity (even total 
number of ones) 

5 MARK parity (parity bit 
always 1) 

7 SP ACE parity (parity bit 
always 0) 

Baud rate, nB 
You can use this command to override the physical settings of 
switches SWl-1 through SWl-4 on the SSC. For example, to change 
the baud rate to 135, send Control-I 4B CR to the SSC. 

Table H-1 
Baud rate selections 

n SSC baud rate n SSC baud rate 

0 Use SWl-1 to SWl-4 8 1200 
1 50 9 1800 
2 75 10 2400 
3 109.92 (110) 11 3600 
4 134.58 (135) 12 4800 
5 150 13 7200 
6 300 14 %00 
7 600 15 19200 

Data format, nD 

You can override the settings of switch SW2-1 with this command. 
The table below shows how many data and stop bits correspond to 
each value of n. For example, Control-I 20 CR makes the SSC 
transmit each character in the form one start bit (always 
transmitted), six data bits, and one stop bit. 

Parity, nP 

You can use this command to set the parity that you want to use for 
data transmission and reception. There are five parity options 
available, described in Table H-3. 

For example, the command string Control-I lP CR makes the SSC 
transmit and check for odd parity. Odd parity means that the high 
bit of every character is 0 if there is an odd number of 1 bits in that 
character, or 1 if there is an even number of 1 bits in the character, 
making the total number of 1 bits in the character always odd. This 
is an easy (but not foolprooO way to check data for transmission 
errors. Parity errors are recorded in a status byte. 

Operating commands 279 



Table H-4 
Time delay selections 

n Timedelay 

0 None 
1 32 milliseconds 
2 250 milliseconds 

(1/ 4 second) 
3 2 seconds 

Set time delay, nC, nL, and nF 

Some printers can't keep up with the Apple Ile when they are doing 
certain operations. You may need to change default settings on the 
SSC to give a printer the time it needs. 

The nC command overrides the setting of switch SW2-2 on the SSC. 
That switch provides two choices: either no delay or a 250 
millisecond delay after the SSC sends a carriage return character. 

The nL command allows time after a line feed character for a printer 
platen to turn so that the paper is vertically positioned to receive the 
next line. 

The nF command alldws time after a form feed character for the 
printer platen to move the paper form to the top of the next page 
(typically a longer time than a line feed). 

Consult the user manual for a given printer to find out how much 
time it takes to move its print head and platen so that you can 
determine an apprdpriate set of values for these three delays. The 
idea is to have at least enough time for the printer parts to move the 
required distance, but not so much time that overall printing speed 
is slowed down drastically. Many printers require no delays because 
they have a buffer built in to keep accepting characters even while 
they are doing form feeds and so on. 

A typical setup for a very slow printer would be Control-I 2C CR, 
Control-I 2L CR, Control-I 3F CR; that is, the SSC waits 250 
milliseconds after transmitting carriage returns, 250 milliseconds 
after transmitting line feeds, and 2 seconds after transmitting form 
feed characters. 

Echo characters to the screen, E_E/D 

For the Apple Ile, as for most computers, displaying (echoing) a 
character on the video screen during communications is a separate 
step from receiving it from the keyboard; though we tend to think if 
these as one step, as on a typewriter. For example, if you send 
Control-A E_D CR, the SSC does not forward incoming character: 
to the Apple Ile screen. This can be used to hide someone's 
password entered at a terminal, or to avoid double display of 
characters. 

This command is used in communications mode only. 

280 Appendix H: Programming With the Super Serlal Card 



Automatic carriage return, C 
Sending Control-I C CR to the SSC causes it to generate a carriage 
return character (ASCII CR) whenever the column count exceeds the 
current printer line-width limit. This command is used in printer 
mode only. 

Important Once this option is on, only clearing the high-order bit at 
location $57B+s (wheres is the slot the SSC is in) can turn this 
option back off. This option is normally off. 

Automatic line feed, L_E/D 

You can use this command to have the SSC automatically generate 
and transmit a line feed character after each carriage return 
character. This overides the setting of switch SW2-5. For example, 
send Control-I L_E CR to your printer to print listings or double
spaced manuscripts for editing. 

Mask line feed in, M_E/D 
If you send Control-I M_E CR to the SSC, it will ignore any 
incoming line feed character that immediately follows a carriage 
return character. 

Reset card, R 

Sending Control-IR CR to the SSC has the same effect as sending a 
PR#O and an IN#O to a BASIC program and then resetting the SSC. 
This command cancels all previous commands to the SSC and puts 
the physical switch settings back into force. 

Operating commands 28 l 



Specify screen slot, S 
In communications mode, you can specify the slot number of the 
device where you want text or listings displayed with this command. 
(Normally this is slot 0, the Apple Ile video screen.) This allows 
chaining of the SSC to another card slot, such as an 80-column text 
card. For the firmware in the SSC to pass on information to the 
firmware in the other card, the other card must have an output entry 
point within its $Cs00 space; this is the case for all currently 
available 80-column cards for the Apple Ile. 

For example, let's say you have the SSC in slot 2 with a remote 
terminal connected to it, and an 80-column card in slot 3. 
Send Control-A 3S CR to cause the data from the remote terminal 
to be chained through the card in slot 3, so that it is displayed on 
the Apple Ile in 80-column format. (Not available in Pascal.) 

Translate lowercase characters, nT 
The Apple Ile Monitor translates all incoming lowercase characters 
into uppercase ones before sending them to the video screen or to a 
BASIC program. The nT command has four options, which are 
shown in Table H-5. 

Table H-5 
Lowercase character display options 

n Action 

0 Change all lowercase characters to uppercase ones before 
passing them to a BASIC program or to the video screen. This 
is the way the Apple Ile monitor handles lowercase. 

1 Pass along all lowercase characters unchanged. The 
appearance of the lowercase characters on the Apple II screen 
is undefined (garbage). 

2 Display lowercase characters as uppercase inverse characters 
(that is, as black characters on a white background). 

3 Pass lowercase characters to programs unchanged, but display 
lowercase as uppercase, and uppercase as inverse uppercase 
(that is, as black characters on a white background). 

282 Appendix H: Programming With the Super Serial Card 



Suppress control characters. Z 

If you issue the Z command described here, all further commands 
are ignored; this is useful if the data you are transmitting, such as 
graphics data, contains bit patterns that the SSC can mistake for 
control characters. 

Sending Control-I Z CR to the SSC prevents it from recognizing any 
further control characters (and hence commands) whether coming 
from the keyboard or contained in a stream of characters sent to the 
SSC. 

Important The only way to reinstate command recognition after the Z 
command is to either reinitialize the SSC, or clear the high-order 
bit at location $5F8+s (where s Is the number of the slot in 
which the SSC is Installed). 

Find keyboard, F _E/D 

You can use this command to make the SSC ignore keyboard input. 

For example, you can include Control-I F_D CR in a program, 
followed by a routine that retrieves data through the SSC, followed 
by Control-I F _E CR to turn the keyboard back on. 

XOFF recognition, X_E/D 
Sending Control-I X_E CR to the SSC causes it to look for any XOFF 
($13) character coming from a device attached to the SSC, and to 
respond to it by halting transmission of characters until the SSC 
receives an XON ($11) from the device, signaling the sec to 
continue transmission. In printer mode, this function is normally 
turned off. 

Important In printer mode, full-duplex communication may not work with 
XOFF recognition turned on. so be careful. 

Operating commands 283 



Tab in BASIC, T E/D 
In printer mode only, if you send Control-I T_E CR to the SSC, the 
BASIC horizontal position counter is left equal to the column count. 
All tabs work, including back-tabs. Tabs beyond column 40 require 
a POKE to location 36. Commas only work as far as column 40, and 
BASIC programs will be listed in 40-column format. 

Note that this use of tabbing is specific to the SSC-it doesn't go 
through the 80-column firmware. 

Terminal mode 
From communications mode, the SSC can enter terminal mode 
and make the Apple Ile act like an unintelligent terminal. This is 
useful for connecting the Apple Ile to a computer timesharing 
service, or for conversing with another Apple II. 

Entering terminal mode, T 
Send Control-A T CR to enter terminal mode. This causes the 
Apple Ile to function as a full-duplex unintelligent terminal. You 
can use this command together with the Echo command to simulate 
the half-duplex terminal mode of the old Apple II Communications 
Card. 

(• By the way: If you enter terminal mode and don't see what you 
type echoed on the Apple video screen, probably the modem 
link has not yet been established, or you need to use the Echo 
Enable command (Control-A E_E CR). 

Transmitting a break, B 
Sending Control-A B CR causes the SSC to transmit a 233-
millisecond break signal, recognized by most time-sharing systems 
as a signoff. 

284 Appendix H: Programming With the Super Serial Card 



Special characters. S_E/D 
If you send Control-A S_D CR, the SSC will treat the Escape key like 
any other key. 

Quitting terminal mode. Q 
Send Control-A Q CR to the SSC to exit from terminal mode. 

SSC error codes 
The SSC uses I/0 scratchpad address $678+s (s is the number of the 
slot that the SSC is in) to record status after a read operation. The 
firmware calls this byte STSBYTE. Table H-6 lists the bit definitions 
of this byte. 

Table H-6 
STSBYTE bit definitions 

Bit •1• means •o• means 

0 Parity error occurred No parity error occurred 
1 Framing error occurred No framing error occurred 
2 Overrun occurred No overrun occurred 
3 Carrier lost Carrier present 
5 Error occurred No error occurred 

The terms parity, framing error, and overrun are defined in the 
glossary. 

Bits 0, 1, and 2 are the same as the corresponding three bits of the 
ACIA Status Register of the SSC. Bit 3 indicates whether or not the 
Data Carrier Detect (DCD) signal went false at any time during the 
receive operation. Bit 5 is set if any of the other bits are set, as an 
overall error indicator. If bit 5 is the only bit set, an unrecognized 
command was detected. If all bits are 0, no error occurred. 

These error codes begin with the number 32 to avoid conflicting 
with previously defined and documented system error codes. 

In BASIC, you can check this status byte via a PEEK $678+s (s is the 
SSC slot), and reset it with a POKE command at the same location. 

In Pascal, the IORESULT function returns the error code value. 

SSC error codes 285 



+ By the way: Any character-including the carriage return at the 
end of a WRITEIN statement-will cause posting of a new value 
in IORESULT. 

Table H-7 shows the possible combinations of error bits 
corresponding to these decimal error codes. 

Table H-7 
Error codes and bits 

Error code• Carrier lost Overrun Framing error Parity error 

0 No error 
32 Illegal command 
33 No No No Yes 
34 No No Yes No 
35 No No Yes Yes 
36 No Yes No No 
37 No Yes No Yes 
38 No Yes Yes No 
39 No Yes Yes Yes 
40 Yes No No No 
41 Yes No No Yes 
42 Yes No Yes No 
43 Yes No Yes Yes 
44 Yes Yes No No 
45 Yes Yes No Yes 
46 Yes Yes Yes No 
47 Yes Yes Yes Yes 

• Result of PEEK $678+s in BASIC or IORESULT in Pascal 

The ACIA 
The Asynchronous Communication Interface Adapter (ACIA) chip 
is the heart of the Super Serial Card. It takes the 1.8432 MHz signal 
generated by the crystal oscillator on the SSC and divides it down to 
one of the 15 baud rates that it supports. The ACIA also handles all 
incoming and outgoing signals of the RS232-C serial protocol that 
the ACIA supports. 

The ACIA registers control hardware handshaking and select the 
baud rate, data format, and parity. The ACIA also performs parallel 
to serial and serial to parallel data conversion, and buffers data 
transfers. 

286 Appendix H: Programming With the Super Serial Card 



SSC firmware memory use 
Table H-8 is an overall map of the locations that the SSC uses, both 
in the Apple Ile and in the SSC's own firmware address space. 

Table H-8 
Memory use map 

Address 

$0000-$00FF 

$04xx-$07xx 

$C0(8+s)O-$C0(8+s)F 

$CsOO-$CsFF 

$C800-$CFFF 

Name of area 

Page zero 

Peripheral slot 
RAM 

Peripheral card 
1/0 space 

Peripheral card 
ROM space 

Expansion ROM 

Contents 

Monitor pointers, 1/0 
hooks, and temp0rary 
storage. 

Locations (8 per slot) 
in Apple Ile pages $04 
through $07. SSC uses 
all 8 of them. 

Locations (16 per slot) 
for general 1/0. SSC 
uses 6 bytes. 

One 256-byte page 
reserved for card in 
slot s; first page of 
SSC firmware. 

Eight 256-byte pages 
reserved for 2K ROM 
or PROM. SSC maps 
its firmware onto 
$C800-$CEFF. 

SSC firmware memory use 287 



Zero-page locations 

Table H-9 . 
Zero-page locations used by the SSC 

Address Name Description 

$24• CH Monitor pointer to current position 
cif cursor on screen 

$26 SLOT16 Usually (slot x 16); that is, $s0 
$27 CHARACTER Input or output character 
$28• BASL Monitor pointer to current screen line 
$2A ZPTMPl Temporary storage (various uses) 
$2B ZPTMP2 Temporary storage (various uses) 
$35 ZPTEMP Temporary storage (various uses) 
$36· CSWL BASIC output hook (not for Pascal) 
$37• CSWH High byte of CSW 
$38· KSWL BASIC input hook (not for Pascal) 
$39. KSWH High byte of KSW 
$4E• RNDL Random number location, updated 

when looking for a keypress (not used 
when initialized by Pascal) 

• Not used when Pascal initializes SSC 

Peripheral;.card 1/0 space 
There are 16 bytes of I/0 space allocated to each slot in the 
Apple Ile. Each set begins at address $C080 + (slot x 16); for 
example, if the SSC is in slot 3, its group of bytes extends from 
$COBO to $COBF. Table i-I-10 interprets the six bytes the SSC uses. 

Table H-10 
Address register bits Interpretation 

Address Register Bits lnlerpretatlon 

$C081 +so DIPSWl 0 SWl-6 is OFF when 1, ON 
whenO. 

(SWl-x) i SWl-5 is OFF when 1, ON 
whenO. 

4-7 Same as above for SWl-4 
through SWl-1. 

288 Appendix H: Programming With the Super Serial Card 



Table H-1 O (continued) 
Address register bits interpretation 

Address Reaister Bits lntercretatlon 

$C082+s0 DIPSW2 0 Clear To Send (CTS) is true 
when 0. 

(SW2-x) 1-3 Same as above for SW2-5 
through SW2-3. 

5,7 Same as above for SW2-2 and 
SW-2-1. 

$C088+s0 ID REG 0-7 ACIA transmit register 
(write). 

RDREG 0-7 ACIA receive register (read). 

$C089+s0 STATUS ACIA status/reset register. 
0 Parity error detected when 1. 
1 Framing error detected 

when 1. 
2 Overrun detected when 1. 
3 ACIA receive register full 

when 1. 
4 ACIA transmit register empty 

when 1. 
5 Data Carrier Detect (DCD) 

true when 0. 
6 Data Set Ready (DSR) true 

whenO. 
7 Interrupt (IRQ) has occurred 

when 1. 

$C08A+sQ COMMAND ACIA command register 
(read/write). 

0 Data Terminal Ready (DTR): 
enable (1) or disable (O) 
receiver and all interrupts. 

1 When 1, allow STATUS bit 3 to 
cause interrupt. 

2-3 Control transmit interrupt, 
Request To Send (RTS) level, 
and transmitter. 

4 When 0, normal mode for 
receiver; when 1, echo mode 
(but bits 2 and 3 must be O) . 

5-7 Control parity. 

SSC firmware memory use 289 



Table H-10 (continued) 
Address register bits interpretation 

Address Register Bits Interpretation 

$C08B+s0 CONTROL ACIA control register 
(read/write). 

0-3 Baud rate: $00 = 16 times 
external clock; see Table H-1. 

4 When 1, use baud rate 
generator; when 0, use 
external clock (not 
supported). 

5-6 Number of data bits: 8 (bit 5 
and 6 = O) 7 (5 = 1, 6 = 0), 6 
(5 = 0, 6 = 1) or 5 (bit 5 and 6 
both= 1). 

7 Number of stop bits: 1 if bit 7= 
O; if bit 7 = 1, then 1-1/2 (with 
5 data bits, no parity), 1 (8 
data plus parity), or 2 

Scratchpad RAM locations 
The SSC uses the scratchpad RAM locations listed in Table H-11. 

Table H-11 
SCratchpad RAM locations used by the SSC 

Address 

$0478+s 

$04F8+s 

$0578+s 

Field name Bit Interpretation 

DELAYFLG 0-1 Form feed delay selection. 
2-3 
4-5 
6-7 

Line feed delay selection. 
Carriage return delay selection. 
Translate option. 

PARAMETE 0-7 Accumulator for firmware's 
command processor. 

STATEFLG 0-2 
3-5 

Command mode when not 0. 
Slot to chain to 
(communications mode). 

6 Set to 1 after lowercase input 
character. 

7 Terminal mode when 1 
(communications mode). 

7 Enable CR generation when 1 
(printer mode). 

290 Appendix H: Programming With the Super Serial Card 



Table H-11 (continued) 
Scratchpad RAM locations used by the SSC 

Address Field name Bit Interpretation 

$05F8+s CMDBYTE 0--0 Printer mode default is Control-
I; communications mode 
default is Control-A. 

7 Set to 1 to Zap control 
commands. 

$0678+s STSBYTE Status and IORESULT byte. 

$06F8+s CHNBYTE 0-2 Current screen slot 
(communication mode); when 
slot = 0, chaining is enabled. 

3-7 $Cs00 space entry point 
(communications mode). 

PWDBYTE 0-7 Current printer width; for listing 
compensation, auto-CR 
(printer mode). 

$0778+s BUFBYTE 0--0 One-byte input buffer 
(communications mode); used 
in conjunction with XOFF 
recognition. 

7 Set to 1 when buffer full 
(communications mode). 

COLBYTE 0-7 Current-column counter for 
tabbing and so forth (printer 
mode). 

$07F8+s MISCFLG 0 Generate line feed after CR 
when 1. 

1 Printer mode when O; 
communications mode when 1. 

2 Keyboard input enabled when 1. 
3 Control-S (XOFF), Control-R, 

and Control-T input checking 
when 1. 

4 Pascal operating system when 1; 
BASICwhenO 

5 Discard line feed input when 1. 
6 Enable lowercase and special-

character generation when 1 
(communications mode). 

6 Tabbing option on when 1 
(printer mode). 

7 Echo output to Apple Ile screen 
when 1. 

SSC firmware memory use 291 



292 

Appendix 

International Versions 

International versions of the Apple Ile have two sets of keyboard 
characters their users may choose between. One set, known as the 
USA character set, is the standard Apple Ile character set described 
in Chapter 2 of this manual. The other set, known as the alternate 
character set, is a special set of characters designed to meet the 
needs of various international users. This appendix describes the 
layout of the various international keyboards when the alternate 
character set has been selected. A layout drawing and a table of 
character codes generated by the keyboard are provided for each 
version described in this appendix. You should note, however, that 
only the ASCII codes that are different from those in the USA set are 
defined in the tables; where a keyboard does not generate any 
different codes, no table is provided. Figure 1-1 is a schematic 
diagram of the international circuit board. 



~ ~ G 

* * ~ 

.. 
.:.di~ 

E'?!!.!18 

t: 
0 
a. 

E 
E 
O> 
0 
=a 
0 

:+= 
0 
E 
Q) 

..c. 
~ 
~ 
0 cc 

.... 0 
I·-

-;a ... c 
:J ...... 
CJ>~ 
ii: _!; 

293 



I\.) 
-0 
.t:. 

( 4 }( 

a. 
( 3 ) -

11 1• C""" 

( 3 ) • 

)....tJ• ..... l 

" ' ,..IL 
(I)~ 
Cll MO l Nt OUI! 

J l6 ·1, J l7·1 
Jl6-2, J l7· 2 
Jl6-5,Jl7· 4 

JIG - 3 , J l 7·6 
J l6 - 4 , Jl,.. . 

Jl6·6,Jl7-19 
Jl7-23 
J l7-Z5 
Jl 7- 12 

Jl 7· 22 
Jl7- 14 
J l7- ll 
Jl7- 16 

Jl 7·~· 

J l6 · 9 , Jl 7-21 
Jl &- 11, J l7 ·1 9 

J l6· ltl. Jl 7-26 
Jl6 ·1 , J l7-17 

Jl7·24' 
J17- ll 

Figure I-lb 

~
C70 

oscz 
47

'' ... 
OSC3 100K 

15 ' 

I
C71 
.IJ2ZMf 

International lie schematic diagram, part 2 

"· - •• • - J c 1-n2e t ... i 

--x.!!....... <3> 

·~ "' ' ] --- -~ , ... 
--- -·~,. .. 

.tt... J• · I l.._l 
•~r•5~J,•1 

6J!.-.Ji ·I 
IO~J7·1 

- - .... - Jl5 · 5 (1'} 

-·~··i ~Jl-41 
~-.. ~J2-41 

~J3· 4 1 (Id 
UtV4 * J 4 · 4 1 

~J>-4 1 
~J6· 41 
OE\17* ~ J7 · 41 

I '-l'] -""'"') ......- J (1 · 7] 41 
....... J ( 1·7J 47 

" " ...... J[ l-7146 

...... J (1 ·1] 45 

~J ( l- 7 144 

..... J [1 · 7l43 
~~ --- J ( 1-7) 42 

AL TCH A C3 ) 

KS TA8 ClJ 
...... D ~ ll> 

• 5 

$-·O 



295 



IV 
-0 
0-

JI 

GHo" 
211. 24 

Jl6 

NUMERIC PAO 

Figure 1-ld 

JZ 

~19 
3~~ 

~ 

~ 

J 2 G 
BURN tN PADS 

-1.;' -. -- ~-C~J 
+• z-~ 
-5~ 

J~ 

J l7 

KEYBOARD 

J 21 
TE S T 

J3 

JG 

International lie schematic diagram, part 4 

J• J$ J6 

~ .. ~ .. ~ .. 
,.~ JS~ ··~ ~ ~ ~ 
~ ~ ~ 

POWER 
Jl 4 

- svoc 

- 12 VDC 

+ 12 110( 

-+5 VDC 

GNO 

GNO 

,L~. 
l'iti · 000". "l1J7;Tc~=~ 1\3 

LZ J.t-: J·1 ,_, F J·lµf 
5 1G~~~c, - I -cisl i c16 ~~~i4 

4 _f ~Y'~ 
1%·001:1 <; 

L4 

1 ~() .t J .lµ f ' 

- ic~0 12 

..);''"' 
1 .! c1z 1 en i t41-~:c 

r:~cF° l:'"F I .lµ f 

':"' ':"' -=- +12 

,JCRI 

IPOwE• ON I ., 
""'" 

~0~ +l <a.9 l c~-7~~c 
rl~~ , J>'~' 

~0'i +i 021'd2 f c3a19.48.~S2.~5-'>9 . 
1 10µ IC61-M,b8, M . 74, ?6 . 

6V -=- C84-86, 12!':>. 12 7 .l µ f 

L' 

JI• 
POWER CONNECTOR 

(TOP VI EW > 

J7 

--
IN ~ 

~ ~~ 
~ 
~ 

Jt 
PADDLE IN 

• 

GAME 110 



The English keyboard 
Figure 1-2 shows the English keyboard layout. The English character set generates only 
one character that is different from the USA character set: the £ character replaces the 
f: character. 

Esc = I * 
7 8 9 + 

4 5 6 -

1 2 3 
Enter 

0 

Figure 1-2 
English keyboard 

Table 1-1 
English keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char Code 

3£ 33 3 33 3 23 £ 23 

Both 

Char 

# 

The English keyboard 297 



The French keyboard 
The French keyboard layout is shown in Figure 1-3. Table 1-2 lists the ASCII codes for 
the French character set that are different from those in the USA character set. 

On the French keyboard, the Caps Lock key affects all keys. Pressing the Shift key while 
the Caps Lock key is engaged "unshifts" to lowercase, but only so long as the Shift key is 
held down. 

Esc = I * 
7 8 9 + 

4 5 6 -

1 2 3 
"" 

0 I 

Figure 1-3 
French keyboard 

Table 1-2 
French keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char Code 

&1 26 & 26 & 31 1 31 
e2 7B e 7B e 32 2 32 
"3 22 22 33 3 33 
'4 27 27 34 4 34 
(5 28 ( 28 ( 35 5 35 
§6 50 § 10 GS 36 6 10 
e7 70 e 70 e 37 7 37 
!8 21 21 38 8 38 
~ 5C c lC FS 39 9 39 
aO 40 a 00 NUL 30 0 00 
)0 29 ) 1B ESC 5B 0 1B 
/\- SE /\ 1E RS 7E 1E 
$• 24 $ 24 $ 2A 2A 
u% 7C u 7C u 25 % 25 
'£ 60 60 23 £ 23 

') 2C 2C 3F 3F ,. 
,. 3B 3B 2E 2E 
:/ 3A 3A 2F I 2F 

298 Appendix I: International Versions 

Both 

Char 

1 
2 
3 
4 
5 
GS 
7 
8 
FS 
NUL 
ESC 
RS 

% 
£ 

I 



The Canadian keyboard 
The Canadian keyboard layout is shown in F!gure 1-4. Table 1-3 lists the ASCII codes for 
the Canadian character set that are different from those in the USA character set. 

Esc = I * 

7 8 9 + 

4 5 6 -

1 2 3 
Enter 

0 

Figure 1-4 
Canadian keyboard 

Table 1-3 
Canadian keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char Code 

20 32 2 00 NUL SB 0 00 
3£ 33 3 33 3 23 £ 23 
6§ 36 6 1E RS SD § 1E 
ae 40 a 7F DEL 7D e 7F 
ii.A 7C ii. 7C ii. SE A SE 
ec 7B e lC FS SC c lC 
"/ 7E 7E 2F I 2F 

Both 

Char 

NUL 
£ 
RS 
DEL 
A 

FS 
I 

The Canadian keyboard 299 



The German keyboard 
The German keyboard layout is shown in Figure 1-5. Table 1-4 lists the ASCII codes for 
the German character set that are different from those in the USA character set. 

Esc = I * 
7 8 9 + 

4 5 6 -

1 2 3 
~ 

0 ' 

Figure 1-5 
German keyboard 

Table 1-4 
German keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char 

20 32 2 32 2 22 0 

3§ 33 3 00 NUL 40 § 
6& 36 6 36 6 26 & 
71 37 7 37 7 2F I 
8( 38 8 38 8 28 ( 
9) 39 9 39 9 29 ) 
O= 30 0 30 0 3D 
8? 7E 8 7E g 3F ? 
0 7D 0 lD GS 5D 0 
+• 2B + 2B + 2A • 
b 7C b lC FS 5C b 
A 7B A 1B ESC SB A 
#/\ 23 # 1E RS 5E 
<> 3C < 3C < 3E > 
, , 2C 2C 3B 
.. 2E 2E 3A 

300 Appendix I: International Versions 

Both 

Code Char 

22 0 

00 NUL 
26 & 
2F I 
28 ( 

29 ) 

3D 
3F 
lD GS 
2A 
lC FS 
1B ESC 
1E RS 
3E > 
3B 
3A 



The Italian keyboard 
The Italian keyboard layout is shown in Figure I-6. Table I-S lists the ASCII codes for the 
Italian character set that are different from those in the USA character set. 

On the Italian keyboard, the Caps Lock key affects all keys. Pressing the Shift key while 
the Caps Lock key is engaged "unshifts" to lowercase, but only so long as the Shift key is 
held down. 

Esc = I * 

7 8 9 + 

4 5 6 -

1 2 3 
7" 

0 ' 

Figure 1-6 
Italian keyboard 

Table 1-5 
Italian keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char Code 

&1 26 & 26 & 31 1 31 
"2 22 22 32 2 32 
'3 27 27 33 3 33 
(4 28 ( 28 ( 34 4 34 
cs SC c lC FS 3S s lC 
e6 7D e 7D e 36 6 36 
)7 29 ) 29 ) 37 7 37 
£8 23 £ 23 £ 38 8 38 
a9 7B a 7B a 39 9 39 
eO SD e lD GS 30 0 lD 
j/\ 7E 1E RS SE I\ 1E 
$• 24 $ 24 $ 2A 2A 
u% 6o u 60 u 2S % 2S 
§0 40 § 00 NUL SB 0 1B 
<> 3C < 3C < 3E > 3E 
' 2C 2C 3F ? 3F ,. 

,. 3B 3B 2E 2E 
:/ 3A 3A 2F I 2F 
c) ! 7C c) 7C c) 21 21 

Both 

The Italian keyboard 

Char 

1 
2 
3 
4 
FS 
6 
7 
8 
9 
GS 
RS 

% 
ESC 
> 

I 

301 



The Western Spanish keyboard 
The Western Spanish keyboard layout is shown in Figure 1-7. 
Table I-6 lists the ASCII codes for the Spanish character set that are different from 
those in the USA character set 

Esc = I 

7 8 9 

4 5 6 

1 2 3 

0 ' 

Figure 1-7 
Western Spanish keyboard 

Table 1-6 
Western Spanish keyboard ASCII codes 

Normal Control Shift 

Key Code Char Code Char Code Char 

lj 31 1 31 1 SB 
2l 32 2 32 2 SD l 
3£ 33 3 33 3 23 £ 
61 36 6 36 6 2F I 
'0 27 27 7B 0 

-§ 7E 7F DEL 40 § 
:N 7C ii lC FS SC :N 

' 2C 2C 3F ,. 
.! 2E 2E 21 

c" 7D c lD GS 22 
<> 3C < 1E RS 3E > 

302 Appendix i: International Versions 

* 
+ 

-

"' 

Both 

Code Char 

SB 
SD l 
23 £ 
2F I 
7B 0 

7F DEL 
lC PS 
3F ? 
21 
lD GS 
1E RS 



The Swedish keyboard 
The Swedish keyboard layout is shown in Figure I-8. Table 1-7 lists the ASCII codes for 
the Swedish character set that are different from those in the USA character set 

Esc = I * 
7 8 9 + 

4 5 6 -

1 2 3 

""'" 
0 ' 

Figure 1-8 
Swedish keyboard 

Table 1-7 
Swedish keyboard ASCII codes 

Normal Control Shift 

Key Code Char Cod• Char Code Char Code 

2" 22 32 2 22 32 
6& 36 6 36 6 26 & 26 
71 37 7 37 7 2F I 2F 
8( 38 8 38 8 28 ( 28 
O== 30 0 30 0 30 30 
+? 2B + 2B + 3F 3F 

27 27 6o 60 
iA 70 i 10 GS 50 A 10 
-A 7E 1E RS 5E A 1E 
@• 40 @ 00 NUL 2A 00 
ob 7C 0 lC FS 5C b lC 
aA. 7B a 1B ESC 5B A 1B 
,, 2C 2C 3B 3B 
.. 2E 2E 3A 3A 

20 lF us 5F lF 
<> 3C < 3C < 3E > 3E 

Both 

Char 

2 
& 
I 
( 

GS 
RS 
NUL 
FS 
ESC 

us 
> 

The Swedish keyboard 303 



Certification 
In countries where it is applicable, the following product safety 
certification supplements the USA FCC Class B notice printed on 
the inside front cover of this manual. 

Product safety 

This product is designed to meet the requirements of IEC 380, Safety 
of Electrically Energized Office Machines. 

Grounding notice 
This product is intended to be electrically grounded. This product 
is equipped with a power supply plug having a third prong called a 
ground prong. This plug will only fit into a grounding-type AC 
outlet. This is a safety feature. 

If you are unable to insert the power supply plug into the outlet, 
contact a licensed electrician to replace the outlet and, if necessary, 
install a ground. 

Do not defeat the purpose of the grounding-type plug. 

304 Appendix I: International Versions 



Power supply specifications 
The ha.sic specifications for the international version of the 
Apple Ile are provided in Table I-8. 

Table 1-8 
International power supply specifications 

Line voltage 170 to 270 VAC, 50Hz 

Max. input power 70W 
consumption 

Supply voltages +12 VDC@ 2.5 A 
-12 VDC @ .25 A 

+5 VDC@ 2.5 A 
-5 VDC@ .25 A 

Power supply specifications 305 



306 

Appendix J 

Monitor 
Firmware 
Listing 



f5 
'-I 

oo, 

0000 
0000 
0000 
0000 

s 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
oono 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 

0001 
0000 

F800 
CIOO 
C300 
C800 

0006 

cooo 
cooo 
COOi 
C002 
C003 
C004 
C.005 
C006 
COOi 
coos 
C009 
COOA 
coos 
cooc 
cooo 
COOE 
COOF 
COIO 
COil 
C012 

I TEST EQU 0 'REAL VERSION 

2 LST ON ; DO LISTING AND SYMBOL TABLES 
3 HSB ON ;SET THEM HIBITS 
4 IROTP.ST EQU I 
5 llO TEST 
6 F80RG F.QU $1800 
7 CIORG F.QU $2100 
8 C30RG EOU $2300 
9 C80RG F.QU $2800 

10 ELSE 
11 FBORG F.QU $F800 
12 CIORG EOU $CIOO 
13 C30RG EOU $C300 
14 C80RG EQU $C800 
15 FIN 
16 HSB ON 
17 INCLUDE EQUATES 

l *****************************•********** 
2 • 
3 • Apple //e Video Firmware 
4 • 

5 * RICK AURICCHIO 08/8 1 
6 * E. BEERNINK, R. WILLIAMS 1984 
7 • 
8 * (C) 1981,1984 APPLE COMPUTER INC. 
9 * ALL RIGHTS RESERVED 

10 • 

11 *******************************•******** 
12 • 
13 GOODF8 EQU 6 
14 • 
15 * HARDWARE EQUATES: 
16 • 
17 KBD P.QU $COOO 
18 CLRBOCOL EQU $C000 
I 9 SET80COL EQU $COO I 
20 RDMAINRAK EOU $C002 
21 RDCARORAH •.OU $C003 
22 WRHAINRAH EOU $C004 

;FB ROH VERSION 

Read keyboard 
Disable 80 column store 
Enable 80 column store 
Read fro11. main RAM 
Read fron. auxiliary RAH 
Write to main RAM 

23 \./'RCARDR.AA EQU $COOS ;Write to auxi.liary RAM 
24 SETSLOTC:XROH EOU SC006 ;Switch in slot CXOO ROM 
25 SETINTCXROH EQU $C007 ; Switch in internal CXOO ROH 
26 SETSTDZP EQU $COOS 
27 SETALTZP EQU $C009 
28 SETINTC)ROH EQU $C00A 
29 SETSLOTC3ROH EQU $COOB 
30 CLR80VID EQU $COOC 
31 SET80V ID EQU $COOD 
32 CLRAL TCHAR EQU $CODE 
33 SETALTCHAR EQU $COOF 
34 KBDSTRB EQU $CO 10 
35 RDLCBNK2 EQU SCO 11 
36 ROLCRAH EQU $CO 12 

Switch in main stack/z:p/lang.card 
Switch in aux stack/zp/lang.card 
Switch in i nt ernal $C3 ROH 
Switch in slot $C3 space 
Disable 80 column video 
Enable 80 column video 

;Nor'nial Apple II char set 
;Norm/inv LC, no flash 
;Clear keyboard strobe 
;>127 if LC BANK2 in use 
;>127 if LC is read enabled 

0000, 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0020 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0028 
002A 
002A 
ooze 
002C 
002F 
002F 
0030 
0032 
0033 
0034 
0035 

C013 
C014 
COii 
C0 16 
C017 
C018 
C019 
COIA 
CO I C 
COIE 
COIF 
C030 
C054 
C055 
C05D 
C05F 
C061 
C062 
C081 
C083 
COBB 

FBB3 
FOIB 
PDPO 
FF69 

0000 
0001 

0020 
0001 
0001 
000 1 
0001 
0001 
OOOl 
0002 
0002 
0029 
0002 
0028 

002F 
0001 
0002 
0001 
0001 
0001 
0001 

37 RDRAHRD EQU $C013 
38 RDRAHWRT EQU $CO 14 
39 ROCXROM EOU $CO l 5 
40 ROALTZP EQU $C016 
41 ROC3ROH EQU $C017 
42 RD80COL EQU $C018 
43 RDVBLBAR EQU $CO 19 
44 RDTEXT EQU $CO I A 
45 RDPAGE2 EQU $CO lC 
46 ALTCHARSET EQU $C01E 
4 7 RD80VID EQU $COIF 
48 SPKR EQU $C030 
49 TXTPAGEI EQU $C054 
50 TXTPAGE2 EQU $C055 
51 CLRAN2 EQU $CO~iD 

52 CLRAN3 EQU $C05F 
53 BUTNO EQU $C061 
54 BUTNI EQU $C062 
55 ROKIN EQU $C081 
56 LCBANK2 EOU $C083 
57 LCBANKI EQU $COBB 
58 • 
59 * MONITOR EQUATES : 
60 • 

) 127 if main RAM read enabled 
)127 if main RAM write enabled 
)12 7 U ROM CX space enabled 
>l27 if alt. zp & le enabled 
) 127 if slot C3 space enabled 
)127 if 80 column store enabled 
) l 27 if not vertical blanking 
)127 if text mode 
)127 if pa~e 2 
)127 if alt char set switched in 
) 127 if 80 column video enabled 
toggle speaker 
switches in text page 1 
switches in text page 2 
annunciator 2 
annunciator 3 
open-apple key 
c l osed-apple key 
swap in 0000-FFFF ROM 
swap in LC bank 2 
swap in LC bank l 

61 F8VERSION F.OU F80RG+$383 ;FB ROH ID 
62 KEYIN EQU PRORG+$51B 
63 COUTI EQU F80RG+$5 FO 
64 MONZ EQU F80RG+$769 
65 • 
66 * ZEROPAGE EQUATES' 
67 • 
68 LOCO EQU 0 
69 LOCI EQU l 
70 OSECT 
71 ORG $20 
7 2 WNDLFT DS l 
7 3 WNDWDTH OS 

74 WNDTOP OS 
75 WNOBTK OS 
76 CH DS 
77 CV OS 
78 OS 
79 BASL OS 
80 BASH 
81 BAS2L 
82 BAS2H 
83 • 

EQU BASL+l 
OS 2 
EQU BAS2L+l 

84 ORG $2F 
85 LENGTH ns I 
86 DS 2 
87 INVFLG OS I 
88 PROMPT OS 
89 YSAV ns 
90 SAVYI DS 

;normd input 
;normal output 
;monitor entry point 

;used for doing PR# 
; used for doing PR# 

scrolling window left 
scrolling window width 
scrolling window top 
scrolling window bottom+l 
cursor horizontal 
cursor vertical 
GBASL,GBASH 
points to current li.ne of text 

; pointer used for scroll 

; length for mnemonics 

>127-nortnal, (127•inverse 
used by monitor upshift 
input buffer index for mini 
for res corin11; 'i 



c..> 
al 

0036 
0038 
0038 
003A 
003C 
003C: 
003E: 
003E: 
0040: 
0040: 
0042: 
0044: 
0044: 
004E: 
004E: 
0050: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 

0002 
0037 
0002 
0039 
003C 
0002 
0030 
0002 
003F 
0002 
0002 
0043 
0001 
004E 
0002 
004P 

0200 

07F8 

047B 
04FB 
0578 
05F8 
067B 
06FB 
077B 
077B 
07FB 
07FB 

91 CSWL 
92 CSWH 
93 KS\IL 
94 KSWH 
95 
96 AIL 
97 AIH 
98 A2L 
99 A2H 

100 

OS 
EOU 
OS 
EOU 
ORG 
OS 
EQU 
OS 
EOU 
OS 

101 
102 
103 
104 

A4L DS 
A4H EOU 
HACSTAT OS 

105 RNOL 
106 RNOH 
107 
108 • 

ORG 
OS 
EOU 
OEND 

CSWL+l 
2 
KSWL+l 
$3C 
2 
AIL+! 
2 
A2L+l 
2 
2 
A4L+l 
I 
$4E 
2 
RNDL+l 

ihook for output routine 

;hook for input routine 

;Monitor temps for MOVE 

;A3 NOT USED 

:machine state on breaks 

; rando• number seed 

109 BUF EOU $200 ; input buffer 
110 * Permanent data in screenholes 
111 * 
112 * Note: these screenholes are only used by 
113 • the 80 colu•n firmware if an 80 colu11n card 
114 * is detected or if the user explicitly a c t1vates 
115 * the firmware. lf the 80 column c ard is not 
116 * present, only HOOE is trashed on RESF.T. 
117 • 
118 * 'l'he success of these routines rely on the 
119 *fact that if 80 column store is on (as it 
120 * normally is during 80 coluan operation) , that 
121 * text page 1 is switched in. Do not call the 
122 * video fi..raware if video page 2 is swit c hed in!! 
123 • 
124 HSLOT EQU $7 F8 
125 • 
126 OLDCH EOU 
127 l·IODE EOU 
128 OURCH EQU 
129 OURCV EOU 
130 CHAR EOU 
13 l XCOORD F.QU 
132 TEMPI EOU 
133 OLDBASL EOU 
134 TEHP2 EOU 
135 OL08ASH EQU 
136 • 

$478+3 
$4F8+3 
$578+3 
$5F8+3 
$678+3 
$6F8+3 
$778+3 
$778+3 
$7F8+3 
$7F8+3 

137 * BASIC MODE BITS 
138 • 

; • $Cn ;n•slot using $C800 

LAST CH used by video fi_raware 
video firmware operatin,e; mode 
80 colu•n CH 
80 colu•n CV 
character to be printed/read 
GOTOXY X-coord (pascal only) 

:temp 
;last BASL (pascal only) 
; temp 
; last BASH ( pascA l only) 

139 * O •••• ••• - BASIC active 
140 * I ....... - Pascal active 
141 •• o •••••• -
142 •• 1 •••••• -
143 * .. 0 ... .. - Print control characters 
144 * .. 1. .... - Don't print ctrl chars. 

0000: 
0000: 
0000 : 
0000 : 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000: 

ClOO: 
CIOO: 

0040 
0020 
0010 
0008 
0004 
0002 
0001 

145 • • •• o •.•• -
146 •••• 1 •••• -
147 * • ... o ... - Prfnt cof\trol characters 
148 * ... . 1 ... - Don't print next ctrl char 
149 • • •••• n •• -
150 • ••••• 1 •• -
151 ••••••• o. -
152 ;. •••••• 1. -
153 * •.....• O - House text inactive 
154 * ...... • l - Mouse text active 
155 • 
156 H.6 
157 M.CTL2 
158 H.4 
159 H.CTL 
160 H.2 
161 H.I 
162 H.HOUSE 
163 • 

EOU 
EOU 
EOU 
r:;ou 
EOU 
P,QU 
EQU 

$40 
$20 
$10 
$08 
$04 
$02 
$01 

164 * Pascal Mode Bits 
165 • 

;Don't print controls 

;Temp ctr l disable 

166 * 0 •••• ••• - BASIC active 
167 * l .... ... - Pascal active 
168 •• o ••.• .. -
169 •• 1 •••••• -
170 • •• o ...•• -
171 • 
172 • 
173 • 
174 • 
175 • 
176 • 
177 * 
178 • 
179 • 
180 • 
181 • 
182 • 

•• ! ••••• -
• . • O ••.. - Cursor always on 
••• 1 •• •• - Cursor always off 
•••• 0 ••• - GOTOXY n/a 
• • • • l ••• - GOTOXY in progress 
••••• o •• - Normal Vldeo 
•••• • 1 •• - Inverse Video 
•••••• 0. - PASCAL I. I F/W ACTIVE 
• • • • • . 1. - PASCAL 1.0 INTERFACE 
• • • • • • • O - l1ouse text t.nactive 
•• ••• •• 1 - Mouse text active 

0080 183 H. PASCAL EOU $80 
0010 184 H.CURSOR EQU $10 
0008 185 M .GOXY EQU $08 
0004 186 H. VHODE C:QU $04 
0002 187 H. PAS! .0 EOU $02 

; Pa.seal act t. ve 
;Don 't print cursor 
;GOTOXY IN PROGRESS 
; PASCAL VIDEO HOOE 
; PASCAL 1 .O MODE 

188 • 
189 • F8 ROH entries 
190 • 

FA47 191 NE\IBREAK EOU F80RG+$247 
FC74 192 IRQUSER EQU F80RG+$474 
FC7 A 193 IRQOONE2 EOU F80RG+$4 7 A 
F887 194 TSTROH EQU F80RG+$B7 

18 INCLUDE 8PUNC 
NEXT OBJECT FILE NAME IS REPLIST.O 

Cl OO I ORG CIORG 
CIOO 2 BYUNCPG EQU * 



c..> 

~ 

CIOO: FECS 
CIOO: FCFO 
CIOO: 
CIOO: 
CIOO : 
CIOO: 
ClOO : 
CIOO: 
ClOO: 
ClOO: 
CIOO: 
CIOO: 
CIOO: 
CIOO: 
Cl OO: 
CIOO: 
CIOO: 
ClOO: 
CLOO: 
CIOO: 
CIOO: 
ClOO: 
CIOO: 
ClOO: 
ClOO: 
CIOO: 
CIOO: 
CLOO: 
r,100: 
CIOO: 
CIOO: 
CIOO: 
ClOO : 
CIOO: 
ClOO : 
CIOO: 
CIOO: 
ClOO: 
CIOO: 
CIOO: 
CIOO : 
CIOO: 
Cl00:4C 13 C2 
Cl03: 
Cl03:A4 24 
Cl OS: A5 2S 
Cl07 .:48 
Cl08: 20 .03 CE 
CIOB:20 F4 Cl 
CIOE: AO 00 
Cll0 : 68 
Cl 11 :69 00 
Cll3 :CS 23 
CllS:90 FO Cl07 

3 FUNCEXIT EQU F80RG+$6CS ; RETURN ADDRESS 
4 MINI EQU F80RG+$4FO 
s • 
6 * BASIC FUNCTION HOOK: 
7 • 
8 * $Cl00 is called by the patched $F8 ROH. 
9 • It provides an extension to $P8 routines 

10 * that do not work. .in 80 columns. 
II * 
12 * Before jumpin~ here, the $F8 rom disabled 
13 * slot l/O and enabled ROM l/O. This makes 
14 * the entire space from $CIOO - $CFFF with the 
IS * exception of the $C300 pue available. 
16 • 
17 • On exit slot I/O is restored if necessary. 
18 • 
19 * INPUT: Y•FUllCTION AS FOLLO\IS: 
20 • 
21 • 
22 • 
23 • 
24 • 
2S • 
26 • 
27 • 
28 • 
29 • 
30 • 
31 • 
32 • 
33 • 
34 • 
3S • 
36 • 
37 • 
38 

l • KEYIN 
2 • Fix escape char 
3 = BASCALC 
4 • VTAB or VTABZ 
S • HOME 
6 = SCROLL 
7 • CLREOL 
8 = CLREOLZ 
9 • RESET 
A • CLREOP 
B • RDKEY 
C • SETllND 
D • Mini Assembler 
E • set 40 columns on PRIO/ IN#O 
F • Fix pl.ck for monitor 

Stack has PHP for status of internal $CNOO ROM 

39 •Note: If 80 Vid is on and the MODE byte is valid, 
40 * this call will be dispatched to an 80 column routine 
41 • by B.FUNCO. Otherwise it will be dispatched to a 
42 • 40 column routine by B.OLDFUNC. In all cases return 
43 * to the Autostart ROH is done through F.RETURN. 
44 • 
4S 8.FUNC JHP DISPATCH ;fi~ure out what to do 
46 • . 

4 7 F. CLREOP LOY CH 
48 LDA CV 
49 CLEOPl PHA 
SO JSR VTABZ 
SI JSR x.cLREOLZ 
S2 LDY #$00 
S3 PLA 
S4 ADC #$00 
SS CHP WNDBTH 
S6 BCC CLEOPl 

: ESC F IS CLR TO END OF PAGE 

;(carry set) 

Cll7:BO 34 Cl4D 
Cll9: 
Cll9:AS 22 
CllB:8S 25 
Cl ID :AO 00 
Cl I F:84 24 
Cl2l:FO E4 Cl07 
Cl23: 
Cl23:A5 22 
Cl25:48 
Cl26:20 03 CE 
Cl29:AS 28 
Cl2B:8S 2A 
Cl2D:AS 29 
Cl2F:8S 28 
Cl31 :A4 21 
Cl33 :88 
Ci34 :68 
Cl3S : 69 01 
Cl37 :CS 23 
Cl39:BO OD Cl48 
Cl3B:48 
enc: 20 03 CE 
Cl 3F: Bl 28 
Cl41 : '11 2A 
Cl43:88 
Cl44:10 F9 CIJF 
Cl46:30 El Cl29 
Cl48 : AO on 
Cl4A: 20 F4 Cl 
Cl4D:AS 25 
Cl4F:4C 03 CE 
Cl52: 
CIS2: ClS2 
ClS2 :A9 28 
CIS4 :8S 2 1 
CIS6 :A9 18 
Cl58:11S 23 
ClSA:A9 17 
CISC:8S 2S 
CISE:DO EF Cl4F 
Cl60: 
Cl60: 
Cl60: 
Cl60 : A4 2A 
Cl62:4C F4 Cl 
Cl65: 
Cl6S: 
Cl6S: 
Cl6S:4C EB CB 
Cl68: 
Cl68: 
Cl68: 
Cl 68 :4C 9A CC 

57 BCS GVTZ : •>always to VTABZ 
58 • 
S9 F. HOME LDA WNDTOP 
60 STA CV 
61 LOY #$00 
62 STY CH 
63 BEQ CLEOPI ;(ALWAYS TAKEN) 
64 • 
6S F. SCROLi. LOA WNDTOP 
66 PHA 
67 JSR VTABZ 
68 SCRLl LDA BASL 
69 STA BAS2L 
70 LDA BASH 
71 STA BAS2H 
72 LOY WNDWDTH 
73 DEY 
74 PLA 
7S ADC 1$01 
76 CHP WNDBTM 
77 BCS SCRL3 
78 PHA 
79 JSR VTABZ 
80 SCRL2 LOA (BASL),Y 
81 STA (BAS2L) ,Y 
82 DEY 
83 BPL SCRU 
84 BMl SCRLI 
8S SCRL3 LDY #$00 
86 JSR X.CLREOLZ 
87 GVTZ LDA CV 
88 GVTZ2 JHP VTABZ :set vertical base 
89 • 
90 F.SETWND EQU * 
91 LOA #40 
92 STA WNDWDTH 
93 LOA # 24 
94 STA WNDBTH 
9S LOA #23 
96 STA CV 
97 BNE GVTZ2 i•>go do vtab, exit 
98 • 
99 * Load Y from BAS2L and clear line 

100 • 
101 F.CLREOLZ LOY BAS2L ;set up by $F8 ROM 
102 JMP X.CLREOLZ ;and clear line 
103 • 
104 • 80 column routines begin here 
!OS • 
106 B. SCROLL JHP SCROLLUP ; DO IT FDR CALLER 
107 • 
108 * Clear co end of line usin~ Y • OURCH 
109 • 
110 B.CLREOL JHP X.GS ;clear to end of line 



~ Cl68: lll * CllE: CI BE 165 8.ESCPIX EOU * 
0 Cl68 : 112 * Clear to end of line using Y • BAS2L CIB!:ZO 14 CE 166 JSR UP SHPT ;upahift lowercaae 

Cl6B: 113 * which vaa set up by the $F8 ROM CIC! :NJ 03 167 B.ESCPIXI LOY #4 - 1 ; SCAN POR A MATCH 
Cl6B : 114 • CIC3: CIC3 168 B.ESCFIXZ EOU * 
Cl6B:A4 ZA l15 8 .CLRROL2 LOY BAS2L jget Y CIC3:D9 EE CZ 169 CMP ESCIN,Y ; IS IT? 

Cl6D:4C 90 CC l16 JMP X. GSEOLZ ; clear t o end of line CIC6:DO 03 CICB 170 BllE B. BSCPIX3 ;•)NAii 

Cl70: 117 • CIC8 : B9 A4 C9 171 LOA ESCOUT, Y ;YES, TRANSLATE IT 

Cl70:4C 74 CC llB B. CLREOP JHP x.vT ;CLEAR TO EOS CICB: CICB 172 8 . ESCPIX3 EOU * 
Cl 73:4C AO C2 l19 8.SETllND JHP 8 .SETllNDX CICB : BB 173 DEY 
Cl 76:4C BO CZ IZO 8.RESET JHP 8 . RESETX ; MUST BE IN BFUNC PAGE CICC:IO P5 CIC3 174 BPL 8.ESCPIX2 

Cl79:4C FZ CZ IZI 8.RDKEY JHP B.RDKEYX CICE:30 3A C20A 175 RMI F . RETURN ; RETURN:CHAR IN AC 
Cl7C: 122 • CIDO: 176 • 

Cl 7C :ZO 90 CC 123 B.HOKI! JSR X. FP ;HOME ' CLEAR CI DO : ZO 70 C8 177 P.BOUT JSR ROUT :print the char11.cter 

Cl7F:AD 78 05 124 I.DA OUR CH CID3:4C OA C2 178 JMP F. RETURN ;ANO RETURN 
Cl8Z : 85 24 125 STA CH ;COPY CH/CV FOR CALLER CID6: 179 * 
CIB4:8D 78 04 IZ6 STA OLDCH ; REMEMBER WHAT WE SET CID6 : 180 * Do displaced •neaoni.c stuff 
Cl87 : 4C FE CD IZ7 JHP VTAB ;calc base & return CID6: 181 * 
CIBA: 12B • CID6:BA IB2 HNNDX TXA ;get old •cc 
Cl 8A : 129 • Complete PR# or IN# call . Quit video fl raware CID7 : 29 03 IB3 AND #$03 ;raeke it a length 
CIBA : 130 * if PR#O and it vas active (B . QUIT). Compl ete call CID9 :B5 2F IB4 STA LENGTH 

CIBA: 131 * lf inactive (F.OUIT). CIDB:A5 2A 185 LOA BAS2L ;get old Y into A 
CIBA : 13Z * CIDD:Z9 BF IB6 AND #$8F 

Cl8A : Cl8A 133 B. QUIT EOU * CIDP : 4C 71 CA 187 JHP DOHN ;1md go to open spaces 
Cl8A:84 00 134 LOY LOCO.X ;was it PRIO/INIO! CIE2: 18B * 
Cl8C : FO OF Cl9D IJ5 BEO NOTO ;•)no, not slot 0 CIEZ : 20 FO FC 189 GOHINI JSR MINI ;do •ini-a1&e•bler 
Cl8E :CO 18 IJ6 CPY #KEYIN ;was it INIO? CIE5 : 8A 190 TXA ;X-0. Set mode to 0, s nd counter 
Cl 90:FO OE CIAO I J7 8EQ ISO ;•>yes, update high byte CIE6 : B5 34 191 STA YSAV ~so not CR on new 1 t.ne 
Cl92 : ZO 80 CD IJ8 JSR QUIT ;quit the firniware CIE8:60 192 RTS 
Cl9 5 : 84 00 IJ9 F.QUIT LOY LOCO,X ;get low byte . into Y CIE9 : 19J * 
Cl97:FO 04 Cl9D 140 BEQ NOTO ;not s l ot O, firmware inactive ClE9: 194 * Pick an 80 column charac t er for the monitor 
Cl99:A9 PD 141 F8HOOK LOA #(KEYIN ; s et high byte to $FD CI E9: 195 * 
Cl9B : 95 01 142 STA LOCI ,X CI E9:AC 78 05 196 FIXPICK LOY OURCH ;get 80 column c ur1Jor 
Cl9D: B5 01 14J NOTO I.DA LOCl,X ;r@store accuaulator CIEC:20 44 CE 197 JSR PICK ;pick the character 
Cl9F : 60 144 RTS CI EP:09 80 198 ORA 1$80 ;always pick as norr11al 
CIAO: 145 * CIFI : 60 199 RTS ; and return 
CllJJ : A5 J7 146 ISO LOA CSWH ; is $C3 in output hook.? CIP2: zoo * 
CIA2 :C9 CJ 147 CHP #(BASIC IN CIP2 : 201 * Load CH into Y and c le .. r line 
CIA4:DO FJ Cl99 148 8NE F8HOOK ;•)no, set to $FOOC CIP2 202 * 
CIA6:4<: 32 C8 149 JMP CJIN ;else set t o $C30), exit A• $C3 CIFZ CIP2 20J F . CLREOL EQU • 
CIA9 : 150 • CIF2 A4 24 204 X .CLREOL LOY CH ;get horizontal posit ion 
CIA9 : A4 Z4 151 F.RDKEY LOY CH ;else do norul 40 cursor CIF4 A9 AO 205 X.CLREOLZ LOA #$AO ;store a normal blank 
CIAB : Bl 28 152 I.DA (BASL),Y ;gr4.b the character CI F6 ZC IE CO 206 BIT ALTCHA.RSET ;unless alternate char set 
CIAD : 48 153 PHA CIF9 10 06 CZOI 207 BPL X.CLREOLZ 

CIAE :Z9 3P 154 AND #$JF ;set screen to flAsh CIFB 24 32 208 BIT INVFLG ;and inver11e 
CIB0 : 09 40 155 ORA #$40 CIFD 30 OZ CZOI 209 BHI X.CLREOL2 

Cl 8Z : 91 28 156 STA (BASL),Y ;and dhplay it CIFF A9 ZO 210 I.DA l$ZO ;use inverse blank 

Cl84:68 157 P.NOCUR PLA C201 4C A8 CC 211 X.CLREOL2 JMP CLR40 :clear to end of line 

Cl85:60 158 RTS ;return (A•char) CZ04 212 * 
CIB6: 159 * C204 213 * Call V'TAB or VTA.BZ for 40 or 80 colu11ns. Ace (CV) 

Cl86:AB 160 f.BASCALC TAY re1Jtore Y CZ04 214 * is saved in BA.SL. 

CI B7 : A5 28 161 I.DA BASL restore A C204 215 * 
Cl 89 :20 BA CA 162 JSR BASCALC calculate: bitse a.ddress CZ04 A8 216 F.VTABZ TAY ;restore Y 

Cl BC:90 4C C20A 16J BCC F.RETURN BA.SCA.LC always returns BCC ! C20 5 A5 28 217 LDA BASL ;and A 
CIBE: 164 * C207 20 OJ CE 218 J SR VTABZ ;do VTABZ 



(..> 

C20A: 
C20A: 
C20A: 
C20A: 
C20A: C20A 
C20A:28 
C20B:30 03 C2l0 
C20D:4C CS FE 
C2l0:4G ca FE 
C2l3: 
C2l3: 
C213: 
C2 l3: 
C2 l3:88 
C214:30 BA ClOO 
C216:88 
C217:30 AS ClBE 
C2l9:88 
C21A:30 9A Cl86 
C21C:88 
C21D:30 3D C25C 
C21F:88 
C220:30 f.2 C204 
C222: 
C222: 
C222: 
C222 :A9 C2 
C224 :48 
C225:A9 09 
C227 :48 
C228: 
C228: 
C228: 
C228: 
C228: AD F6 04 
C228:29 06 
C22D:OO OD C23C 
C22F:98 
C230:18 
C231 :69 OC 
C233 :48 
C234: 20 50 CS 
C237: 20 FE CD 
C23A:68 
C23B:A8 
C23C: 
C23C: 
C23C: 
C23C:A9 Cl 
C23E:48 
C23F:B9 44 C2 
C242 :48 
C243 : 
C243: 

219 * 
220 * EXIT. EITHER EXlT W!Tli OR WITHOIIT 
221 * ENABLING 1/0 SPACE. 
222 * 
223 f.RETURN EOU * 
224 PLP ;GET PRIOR I/O DISABLE 
225 F.RET2 BM! F.RETl ;•)LEA.V~ lT DISABLED 
226 .JMP FUNCEXIT ;•)EXIT & ENABLE 1/0 
227 F.RETl JMP FUNCEXIT+3 ;EXIT DISABLED 
228 * 
229 * Do BOUT, ESCFIX, BASr.ALC, and KEY IN immediately 
230 * to avo'ld destroyin~ Accumulator. 
231 • 
232 DIS PATCH DEY 
233 BHI F. ROUT ;code 0 - 80 column output 
234 DEY 
23S BHI B.ESCFIX ;code l • ESCFIX 
236 DEY 
237 BM! F. BASCALC ;code 2 • BASCALC 
238 DEY 
239 BHI B.KEYIN ;code 3 • KEYIN 
240 DEY 
241 BHI F.VTABZ ; code 4 - VTABZ 
242 * 
243 * First push address of j!:eneric return routine 
244 * 
245 LOA' #<F.RETURN ;return to F.RETIJ'RN 
246 PHA 
247 LOA #)F.RETURN-1 
248- PHA 
249 * 
250 * If any of 5 bits in $4FB (MODE) is on, then the 111ode is not 
251 * valld for video firmware. Use old routines. 
252 * 
253 
254 
255 
256 
257 
256 
259 
260 
261 
262 
263 

LOA MODE ;no, is mode valid? 
AND IM.PASCAL+H.6+H . 4+M.2+H.l 

264 * 

BNE GETFUNC 
TYA 
CLC 
ADC *TABLEN 
PHA 
JSR CSETIJP 
JSR YTAB 
PI.A 
TAY 

; •>no, use 40 column routines 
;80 column routines in 
;2nd half of table 

;set up 80 coluan cursor 
;calc base 

;restore Y 

265 * Now push address of routine 
266 • 
267 GETFUNC LOA #(BFUNCPG ;'Stuff routine Addreas 
268 PHA 
269 LOA F.TABLE,Y 
270 PHA 
271 • 
272 * RTS goes to routine on stack. When the routine 

C243 
C243 
C243 
C243:60 
C244 
C244 
C244 
C244 
C244 
C244:18 
C245:22 
C246:Fl 
C247 :SF 
C248:75 

286 
C249:02 
C24A:A8 
C24B:51 
C24C :El 
C24D:94 
C24E:E8 
C24F:D5 
C250: 
C250: 
C250: 
C250:7R 
C25l :64 
C252:67 
C253:6A 
C254 :75 
C255:6F 
C256:78 
C257:72 
C258:El 
C259:89 
C25A:E8 
C25B: 05 
C25C: 
C25C: 
C25C:2C lF CO 
C25F :l0 06 
C261 :20 74 CB 
C264 :4C OA C2 
C267: 
C267 :A8 
C268:8A 
C269 :48 
C26A :98 
C268:48 
C26C:48 
C26D: 
C26D :68 
C26E :C9 PF 
C270:FO 04 

C244 

oooc 

C25C 

C267 

C276 

273 *does an RTS, it returns to F.RETURN, which restores 
274 * the lNTCXROM status a nd returns. 
275 * 
276 RTS 
277 • 
278 * Table of routines to call. All r outines are 
279 * in the SCIOO page . These are low bytes only. 
280 * 
281 F.TABLE EOU * 
282 DF8 #>F.HOME-1 ;(5) 40 column HOHE 
283 DFB #)F.SCROLL-1 ;(6) 40 column scroll 
2~4 DFB ll>F.CLREOL-1 ;(7) 40 column clear line 
285 DFB l>F.CLREOLZ-1 ;(8) 40 column clear with Y set 

DFB #)B.RESET-1 ;(9) 40/80 column reset 
287 DFB #)F,CLREOP-l ;(A) 40 column clear end of page 
288 OFB l>F. RDKEY-l ;( B) readkey w/flashlng checkerboard 
289 DFB #) F.SETWND-1 ;(C) Set 40 column window 
290 OFB f )GOHINI -1 ;(D) Mini-assemhler 
291 DFB #)F.QIJIT-1 ;(E) quit before IN#O,PR#O 
292 DFB #)FIXPICIC-1 ;(F) fix pick for 80 columns 
293 DFB !f>MNNDX-1 ;(10) calc mnemonic index 
294 • 
295 TABLEN EQU *-F.TABLE 
296 * 
297 DFB l) B.HOHE-1 ;{ l l) 80 colu.n HOKE 
298 DFB #)B.SCROLL-1 ;{12) 80 colu•n scroll 
299 DFB l)B.CLREOL-1 ;(13) 80 colu•n clear Hne 
300 DFB *>B.CLREOLZ-1 ;( 14) 80 column clear with Y set 
301 OFB #)B.RESET-1 ;(15) 40/80 column reset 
302 DFB H>B.CLREOP-1 ;(16) 80 column clur end of page 
303 DFB fl)B.RDKEY-1 ;(17) readkey w/.inve.ne cursor 
304 DFB #>R.SETWND-1 ;(18) 40/80 column VTAB 
305 DFIS #>GOHINI-1 ;(19) Mini-Assembler 
306 DFB l>B.QUIT-l ;{ lA) quit before INIO,PRIO 
307 DFB l>FIXPICK-1 ;(lB) fix pick for 80 colu11ns 
308 DPB f)HNNDX-l ; (IC) calc mnemonic index 
309 • 
310 B.KEYIN EOU . 
311 BIT RD80VID BO column~? 
312 BPL B.KEYINl •)no, flash the cursor 
313 JSR BIN get a keystroke 
314 GOF.RET JMP F.RETURN and return 
315 * 
316 B.KEYINI TAY ;preserve A 
317 TXA ;pu t X on stack 
318 FHA 
319 TYA ;restore A 
320 PHA ;save char on stack 
321 PHA ;du111111y for cursor/char test 
322 * 
323 NEW.CUR PLA ;y.et last cursor 
324 CMP #$FF ;was it checkerboard? 
325 BEQ NEW.CURl ;•)yes, get old char 



~ 
I\) 

C272 A9 FF 
C274 00 02 C278 
C276 68 
C277 48 
C278 48 
C279 A4 24 
C27B 91 28 
C27D 
C270 
C27D 
C27D 
C27D E6 4E 
C27F IJO OA C28B 
C281 AS 4F 
C283 E6 4F 
C28S 4S 4F 
C287 29 40 
C289 00 E2 . C260 
C28B AD 00 CO 
C28E 10 ED C27D 
C290 
C290 68 
C291 68 
C292 A4 24 
C294 91 28 
C296 68 
C297 AA 
C298 AD 00 CO 
C29B SD 10 CO 
C29E 30 C4 C264 
C2A0 
C2AO C2AO 
C2AO 20 52 Cl 
C2A3 2C IF CO 
C2A6 10 02 C2AA 
C2 A8 06 21 
C2AA A5 2S 
C2AC 8D FB 05 
C2AF 60 
C2BO 
C2BO 
C2BO 
C2BO C2BO 
C2BO A9 FF 
C2B2 BD FB 04 
C2BS AD SD CO 
C2B8 AD SF CO 
C2BB 
C2BB 
C2BB 
C2BB 
C2BB 
C2BB 
C2BB AD 62 CO 

326 LDA #$FF 
327 BNE NEW.CUR2 
328 NEW.CUR! PLA 
329 PllA 
330 NEW . CUR2 PltA 
331 LDY CH 
332 STA ( BASL), Y 
333 • 

;no, g.et checkerboard 
;•>always 

;get character 
; into accumulator 
;gave for next cursor check 

;get cursor ho rizont a l 
;and save c har/cursor 

3).4 * Now leave char/cursor for awhile or 
335 • until a key 1s pressed. 
336 .• 
337 WAITKEYl INC RNDL ;hump random seed 
338 8NE WAITKEYt. ;•>and check keypress 
339 LOA RNDH ;is it time to blink yet? 
340 INC RNDH 
341 EOR RNOH 
342 ANO #$40 
343 BNE NEW.CUR ;•>yes 1 blink it 
344 WAITKEY4 LDA KBD ; Ivories been ti ckled? 
34.S BPL WAITKEYl ;no, keep blinkin~ 
346 • 
347 
348 
349 
350 
3Sl 
352 
353 
3S4 
355 
3S6 • 

PLA 
PLA 
LDY CH 
STA ( BASL), Y 
PLA 
TAX 
LAA KBD 
STA KBDSTRB 
BMI GOF. RET 

357 B.SE'NNDX EQU • 
358 JSR F .SETWNO 
359 BIT R080VlD 
360 BPL SKPSHFT 
361 ASL WNOWDTH 
362 SKPSHFT LOA CV 
363 
364 
36S • 

STA 
RTS 

OURCV 

pop char/cursor 
pop character 
and rlhplay i.t 
(erase c ursor) 

;restore X 

;now retrleve the key 
;clear the st robe 
;•>exit <'\lways 

;set 40 column width 
;80 columns? 
;•)no, width ok 
;make it 80 

;update OURCV 

366 • HANDLE RESET FOR MONITOR: 
367 • 
368 B.RESETX EQU * 
369 LOA #$FF ; DESTROY MODE BYTE 
370 STA MODS 
3 71 LDA CLRAN2 ; SETUP 
372 LDA CLRAN3 ; ANNUNCIATORS 
373 • 

IF THE OPEN APPLE KEY 374 • 
37S • 
376 • 
377 • 
378 • 
379 

(ALIAS PADDLE BUTTONS 0) IS 
DEPRESSED, COLDS TART THE SYSTEM 
APTER DESTROY! NG MEMORY: 

LOA BUTNl :GET BUTTON 1 (SOLID) 

C2BE 10 03 C2C3 
C2CO 4r. 00 C6 
C2C3 AD 61 CO 
C2C6 10 IA C2E2 
C2C8 
C2C8 
C2C8 
C2C8: 
C2C8 :AO BO 
C2CA:A9 00 
C2CC:8S 3C 
C2CE:A9 BF 
C200:38 
C2Dl: C2Dl 
C2Dl : 85 30 
C2D3 :48 
r.2D4:A9 AO 
C2D6:91 3C 
C2D8 :88 
C2D9:91 3C 
r.20B:68 
C2DC:E9 0 1 
C2Df. :C9 01 
C2f.0: 00 EF C2Dl 
C2E2: 
C2E2: 
C2E2: 
r.2E2: 
C2E2: 
C2E2: 
C2E2: 
C2E2: 
C2E2: 
C2E2: 
C2F.2: C2F.2 
C2E2 :80 OB CO 
C2E5:20 89 CA 
C2E8:00 03 C2ED 
C2 f.A: 8D OA CO 
C2f.D:60 
C2EF.: 
C2EF.:88 95 BA 88 
C2F2: 
C2F2:A4 24 
C2 F4: Bl 28 
C2F6:2C IF CO 
C2F9:30 F2 C2En. 
C21'8:4C 26 CE 
C2FE: 
C2FE: 0002 
C2FE: 0002 
C300: 0000 
s 

C300 : 

380 BPL NODrAGS 
181 JMP DIAGS 
382 NODIAGS LOA BUTOO 
383 BPL RESETRET 
384 • 

•)Up 1 no di•R• 
•>else go do dtagnositca 
GET BUTTON 0 (OPEN) 
•)NOT JIVE OR DIAGS 

385 • BLAST 2 ·BYTES OF EACH PAGE, 
INCLUDING THE RESET VECTOR: 386 • 

387 • 
388 
389 
390 
391 
392 
39} BLAST 
394 
39S 
396 
397 
398 
399 
400 
401 
402 
403 
404 * · 

LDY #$ 80 
LOA #0 
STA Al L 
LDA t$BF 
SEC 
EOU • 
STA Al H 
PllA 
LOA 
STA 
DEY 
STA 
PLA 

#$ AO 
(AlL),Y 

(Al L),Y 

SBC 11 
CMP 11 
BNE BLAST 

;LET IT PRECESS DOWN 

; START FROM BFXX DOWN 
; FOR SUBTRACT 

;save ace to store 
;bhnks 

;restore ace for counter 
i BACK DOWN TO NEXT PAGE 
;STAY AWAY FROM · STACK! 

405 * If there is a ROH card plugged into s l ot 3, 
lt06 • don't swit ch in the internal ROH CJ space. If -not , 
407 • only switch ther11 in if there is a RAM card 
408 * ln the video ·sloto 
409 • 
410 * NOTE : The //e powers up with internal $C3 ROH switched 
411 * in. TSTROHCARD switches it out, RESF.TRET may or may 
412 * not switch it back tn . 
413 * 
414 RESF.TRET EQU * 
415 STA SETSLOTC3ROH ;swap in llllot 3 
416 JSR TSTROHCRD ;ROM or no card plu1u~ed in? 
417 BNE CORETNl ;•>ROH or no Cilrd, leavt? $C3 slot 
418 STA SETINTC3ROH ;card, enable internal ROM 
419 GORETNl- RTS 
420 * 
421 ESC!N DFB $88,$95,$8A,$88 
422 * 
423 B. RDKEYX LDY ·cH 
424 LDA (BASL) ,Y 
425 811' R080VlD . 
426 BIH GORETNl 
427 JMP - INVERT 
428 * 
429 ZSPAREC2 P.QU C30RG-• 
430 OS C30RG-• ,0 
43i IFNE •-C30RG 

;get cursor po!'ition 
;and cha ra cter 
;80 col ul'l.ns? 
;•>don't display cursor 
;else display cu rsor, exit 

432 FAIL 2,'C300 over flow' 
433 FIN 



~ 
c..> 

CJOO 
CJOO 
CJOO 
CJOO 
CJOO 
CJ OO 
CJOO 
CJOO 
CJOO 
CJOO 
CJOO 
CJOO C30C 
CJOO CJOO 
CJ OO 2C 4J CE 
C30J 70 12 CJ I 7 
C305 
C305 
CJOS 
CJ05 
CJ05 C305 
CJOS J8 
CJ06 90 
CJ07 
C307 
C307 
CJ 07: 
C30 7: CJ07 
CJ07: I S 
C108: BS 
C309:50 OC C3I 7 
C30B: 
C308: 
C308 
C30B 
C30B 
C308 
C30B 
C30B 
C30B OI 
C30C S8 
C30D 
C30D 4A ' 
CJOE 50 
C30 F 56 
C3 I O SC 
C3 I I 
C3II 
C3II 
c31I 
C3II 4C 76 C3 
C3I4 4C C3 C3 
C3I 7 
C3 17 
C3I7 SD 7B 06 

l 9 INCLUDE C3SPAC E 

1 ****"'**•································ 2 • 
J • lllI S I S lllE $C3XX ROH SPACE: 
4 * Note: Thls page mus t no t be used by any routines 
~ * called by the F8 ROH.. Wh e n it is referenced , i t claims 
6 * the C800 space (kic:klng ou t anyone who WAS ueinp: it). 
7 * Th is also means that perlphet"al cards canno t use the AUXHOVE 
8 * and XFER rout i n es frol\ the 1 r C800 space . 
9 • 

10 ······························•********* I l CNOO EQU • 
I 2 BASICI NT EQU • 
13 BIT SEV ; set vflag (init) 
I4 BVS BAS ICE NT ; ( ALWAYS TAKEN) 
IS • 
16 * BASIC i nput entry point. After a PR#), t his is the 
17 * add ress that is called t o input each c haracte r. 
IS • 
I9 BAS IC IN EQU • 
20 SEC 
21 DFB $90 ; BCC OPCODE (NEVER TAKEN) 
22 • 
23 * RAS IC o utput entry po int ~ Af.ter ;,; PR# 3, this is the 
2' * address that is called t o output each character. 
25 • 
26 BASICOUT EQU • 
2 7 cu: 
n CLV ;CLEAR VF LAG (NOT INIT) 
29 RVC M SIC ENT ;(ALWAYS TAKEN) 
30 • 
31 * PascRl l. l FirrnwarF.!: Protocol titble : 
J 2 • 
33 * This tables t denti fieG th is as an Apple //e 80 column 
34 * ca rd . It poi nt s to the four routines available to 
35 * progranis doi ng 1/0 usinR t he Pascal 1 . l Firt11Wa re 
36 * Protocol. 
J7 • 
38 OFB $0 I ;GENERIC S IGNATURF. · BYTE 
39 DFB $88 ; DEVICE SIGNATURE BYTE 
40 • 
4I DFB #)JPINIT ;P ~SCAL INIT 
42 DFB #)J PREAD ; PASCAL READ 
43 DFB #) JPWRI'fE ;PASCAL WRITF. 
44 DFB #)JPSTAT ; PASCAL STATUS 

45 "'*************************************** 
46 • 
47 • I 28K SUPPORT ROUTINE ENfRIES: 
4S • 
49 JMP MOVE ;>!EMORY MOV E ACROSS BANKS 
50 JMP XFER ; TRANS FER ACROSS BANKS 
51 ••••••••••••••••••••••••••••••••••••• .ir•• 
52 • 
53 RASICENT STA CHAR 

C3IA:98 
C31B : 4S 
C3IC :aA 
C3I D: 4a 
C3IE :Oa 
C31F : 
C31P : 
C3IF: 
C3IF : 
C3IP : 
C3IF: 
C3IF : AD FB 04 
C322 : 2C F8 07 
C325 : 30 05 C32C 
C327 :09 Oa 
C329 : aD PB 04 
C32C: 
C32C: C32C 
CJ2C:20 6D C3 
C32F:28 
C330 : 70 IS C347 
C332 : 
C332 : 
C332: 
C332: 
C332: 
C332 : 90 I O C344 
C334 : AA · 
CJ35: IO OD C344 
C337 :20 SB CD 
C33A:68 
C33B : AA 
C33C : 68 
C33D:A8 
C33E:AD 78 06 
C34I :6C 3a 00 
CJ44: 
CJ44 4C 7C ca 
C347 4C 03 CS 
CJ4A 
CJ4A C34A 
C34A 20 . 6D CJ 
C34D 4C B4 C9 
C350 C350 
C350 20 6D C3 
C353 4C D6 C9 
CJ56 C356 
C356 20 6D CJ 
C359 4C FO C9 
CJSC 
C35C AA 
CJ5D FO oa C36 7 
C35F CA 
C360 DO 07 C369 

54 TYA ; ANDY 
55 PHA 
56 TXA ; AND X 
57 PHA 
SS PHP ; SAVE CARRY & VF LAG 
59 • 
60 * If escape aode is a llowed, t he high bit of HSLOT is 
61 * clear . Set H.CTL to fla,; that I) escapes are allowed, 
62 * 2) that con trol c haracters should not be echoed. 
63 • H.CTL is cleared by BPRINT. 
64 • 
65 
66 
67 
6a 
69 
70 • 

LDA MODE 
BIT MSLOT 
BMI NOGETLN 
ORA #M.CTL 
STA MODE 

7 I NOGETLN EQU • 

;else esc enable, ctl disable 
;get HSLOT 
;•>Esc disable , ctl c har enable 

72 JSR SETC8 SETUP CS INDlCATOR 
73 PLP GET VFLAG ( INIT) 
74 BVS JBASINIT ->on THE !NIT 
75 • 
76 * lf .it PR#O has been done , input should be transferred 
77 * fr om the video firmware to KEYIN. Thi s h detected 
78 * if the high bit of th e mode byte is set . 
79 • 

80 
Sl 
82 
83 
84 
85 
S6 
S7 
S8 
a9 
90 • 

BCC 
TAX 
BPL 
JSR 
PLA 
TAX 
PLA 
TAY 

JC8 

JC8 
SETXEYIN 

LDA CHAR 
Jl!P (KSWL) 

9 I JC8 JMP caBASI C 
92 JBASINIT JMP BASlC INIT 
93 • 
94 J PINIT 
95 
96 
97 JPREAD 
9S 
99 

100 JPWRITE 
IOI 
102 
I03 • 
I04 JPSTAT 
IOS 
I06 
I07 

EOU * 
JSR SETCS 
JMP PlNIT 
EQU • 
JSR SETCa 
JMP PREAD 

EQU * 
JSR SETC8 
JMP PWRITE 

TAX 
BEQ PIORDY 
DEX 
BNE PSTERR 

:•>output, no problem 
; test iaode 
jVideo fi raware is on 
;e l s e set FDLB as input 
;restore registers 

;go input the c haracter 

;GET OUT OF CH SPACE 
;•)GOTO ca SPACE 

;SETUP CS INDICATOR 
;XFER TO PASCAL lNlT 

; SETUP C8 INOICATOR· 
; XFER TO PASCAL READ 

;SETUP CS INDICATOR 
;XFER· TO PASCAL WRITE 

;is reques t code • O? 
;•)yes, ready for output 

;check fo r any input 
;•)bad request, retu rn error 

and 



(.) 
C362 2C 00 CO 108 BIT KBD ; look for a key C391 162 • __, 

.b. C365 10 04 C368 109 BPL PNOTRDY ;"'>no keystroked C391 C391 163 MOVESTRT EQU • 
C367 38 110 PIORDY SBC C391 AO 00 164 LDY #0 ;DtJloDofY INDEX 
C368 60 Ill RTS C393 165 • 

C369 112 • C393: C393 166 MOVELOOP EQU • 
r.369 A2 03 113 PSTERR LOX #3 ;else flag error C393 : Bl JC 167 LDA (AlL},Y ;GET A BYTE 
C36B 18 l l 4 PNOTRDY CLC C395:91 42 168 STA (A4L), Y ;MOVE IT 

C36C 60 115 RTS C397: t6 42 169 INC A4L 
C36D 116 ................. ........................ C399:DO 02 C39D 170 BNE NXTAI 
C360 117 • NAME SETC8 C39B:t6 43 l 71 INC A4H 

C36D 118 • FUNCTION: SETUP IRQ $C800 PROTOCOL C390 : A5 3C 172 NXTAI LDA AIL 

C36D 119 • INPUT NONE C39F:C5 3E 173 CMP A2L 

C36D 120 • OUTPUT NONE C3Al: A5 30 174 LDA AIH 

C36D: 12 l * VOLATILE: NOTHING C3A3: E5 3F l 75 SBC A2H 
C36D: 122 • CALLS NOTHING C3A5 : t6 JC l 76 INC AIL 

C36D: 123 ••***"***•***********•·················· C3A7 :DO 02 C3AB l 77 BNE CO i 

C36D: 124 • C3A9 : E6 3D 178 INC AlH 

C36D: C36D 125 SETC8 EQU . C3AB : 90 E6 C393 179 COi BCC MOVELOOP ;• )MORE TO MOVE 

C36D:A2 C3 126 LOX l <CNOO ; SLOT NUMBER C3AO : 180 • 

C36F:8E FS 07 127 STX HS LOT ;STUFF lT C3AD: 181 • RESTORE ORIGINAL FLAGS : 

C372 :AE FF CF 128 LOX $CFFF ;kick out o ther SC8 ROHs C3AD : 182 • 

C375 :60 129 RTS C3AO : 80 04 CO 183 STA WRMAINRAM ;CLEAR FLAG2 

C376 : 130 ** •••••••••••••••••• .,. ••••••• "****1r****** C3BO :63 184 PLA ;GET ORIGINAL STATE 

C376: 13 1 * NAME MOVE C381:10 03 C3B6 185 BPL C03 ; • )IT WAS ·OFF 

C376 : 132 * FUNCTION: PERFORM CROSSBANK MEMORY HOVE C3B3 : 80 05 CO 186 STA WRCARORAH 

C376 : 133 • INPUT Al=SOURCE ADDRESS C386: C386 187 C03 EQU . 
C376: 134 • : A2•SOURCE END C3B6 : 8D 02 CO 188 STA RDHAINRAH ;CLEAR FLAG! 
C376: 135 • A4•DESTINATION· START C3B9 : 68 189 PLA ;GET ORIGI NAL STATE 

C376 : 136 • CARRY SET•MAIN--) CARD C3BA : 10 03 C3BF 190 BPL HOV>:RET ;==) IT WAS OFF 

C376: 137 • CLR•CARD-->HAIN C3BC :8D 03 CO 191 STA RDCARDRAH 

C376: 138 * OUTPUT NONE C38F : C3BF 192 MOVERET EQU . 
C376: 139 * VOLATILE: NOTHI!«; c3BF:68 193 PLA ;RESTORE Y 

C376: 140 * CALLS NOTHING C3CO : A8 l 94 TAY 
C376 : 141 ··············••tr•••···················· C3C l : 68 195 PLA ; AND AC 

C376: 142 • C3C2 : 60 l9& RTS 

C376: C376 143 MOVE EQU . C3C3 : 197 ····· ··········••
11 •••••*****•*********** 

C376 :48 144 PHA ; SAVE AC C3C3 : 198 * NAME : XFER 

C377 : 98 145 TYA ; ANll Y C3C3 : l 99 * FUNCTION: TRANSFER. CONTROL CROSSBANK 

C378 :48 146 PHA C3C3 : 200 * INPUT : $03ED•TRANSFER ADDR 
C379 : AO 13 CO 147 LOA RDRAMRD ;SAVE STATE OF C3C3 : 20 1 • CARRY SET• XFER TO CARD 

C37C :48 148 PHA ; MEMORY FLAGS C3C3: 202 • CLR•XFER TO HAIN 
C37D:AD 14 CO 149 LOA RDRAHWRT C3C3 : 203 * VFLAG CLR• USE STD ZP/STK 

C380 : 48 150 PHA C3C3: 204 • SET• USE ALT ZP/STK 

C38 1: 15 1 • C3C3 : 20 5 * OUTPUT NONE 

C381 152 * SET FLAGS FOR CROSSBANK HOVE: C3C3 : 206 * VOLATILE : $03E0/03EE IN OEST BANI< 

C381 153 • C3C3 : 207 * CALLS NOTH Ill:; 

C38 1 90 08 C38B 154 BCC HOVEC2M ;•>CARD- ->HAIN C3C3 : 208 * NOTE ENTERED VIA JMP, NOT J SR 

C383 8D 02 CO 155 STA RDHAINRAH ;SET FOR HAIN C3C3: 209 ********************ll**********"'******** 
C386 SD 05 CO 156 STA WRCARORAM ; TO CARO C3C3 : 210 • 

C389 BO 06 C391 157 BCS HOVESTRT ; •>(ALWAYS TAKEN) C3C3 : C3C3 2ll XFEF EQU . 
C388 158 • C3C3 :48 2l2 PHA ; SAVE AC ON CURRENT STACK 

C38B C38B 159 MOVEC2M EQU . C3C4: 2 13 • 

C38B 8D 04 CO 160 STA WRMAINRAH ;SET FOR CARD C3C4: 214 * COPY DESTINATION ADDRESS TO THE 

C38E 80 03 CO 161 STA RDCARDRAM ; TO HAIN C3C4: 2 15 • OTHER BANK SO THAT WE HAVE IT 



C3C4 
C3C4 
C3C4 AD ED 03 
C3C7 4S 
C3CS AD EE 03 
C3CB 4S 
C3CC 
C3CC: 
C3CC: 
C3CC :90 OS C3D6 
C3CE: SD 03 CO 
C3Dl : SD OS CO 
C3D4 : BO 0 6 C3 OC 
C3D6: C3D6 
C3D6: 8D 02 CO 
C309 : 80 0 4 CO 
C30C: 
C30C : C30C 
~30C : 6S 
C3DD :8D EE 03 
C3EO :6S 
CJEl : 80 ED 03 
C3E4: 68 
C3ES: 70 OS C3EC 
C3E7 : 80 OS CO 
C3EA:50 03 C3EF 
CJEC:8D 09 CO 
C3EF:6C ED 03 
C3F2 : 
C3F2: 0002 
C3F4: 
CJF4: 
C3F4 : 
C3F4: 
C3F4 :SO SI CO 
C3P7 :4C 7A re 
CJFA: 
C3FA : 
CJFA : 
CJFA : 
C3FA: 
C3FA: 
C3FA:2C IS CO 
CJFO:BD 0 7 CO 
C400: 
C400: 
C400: 
C400 : 
C400: 
C400: 
C400: 
C400: 
C400: C400 
C400 :DS 

(;.> ..... 
(11 

216 * IN CASE WE DO A SWAP: 
217 • 
21S 
219 
220 
221 
222 • 

LDA $03ED 
PHA 
LOA $03EE 
PHA 

;GET XFERADOR LO 
;SAVE ON CURRENT STACK 
;GET XFERAllDR HI 
;SAVE IT TOO 

223 * SWITCH TO APPROPRIATE BANK : 
224 * 
22S BCC XFERC2H ;•>CARD--)HAIN 
226 STA ROCARDRAM ; SET FOR RUNNING 
227 STA WRCARDRAM ; IN CARD RAH 
228 HCS XFERZP ; •> always taken 
229 XFERC2H EQU * 
2)0 STA RDltAINRAH ;SET FOR RUNNING 
231 STA WRHAINRAM ; IN HAIN RAM 
232 • 
233 XF ERZP EQU * 
234 PLA 
235 STA $03EE 
236 PLA 
237 STA S03ED 
23S PLA 
239 BVS XFERAZP 
240 STA SETSTDZP 
241 eve JKPOEST 
242 XFERAZP STA SF.TALTZP 
243 JMPDEST JHP ( $03ED) 
244 • 

;SWITCH TO ALT ZP/S'l'K 
; STUFF XFERADDR 
; Hl AND 

LO 
;RESTORE AC 
;•)switch i n alternate zp 
;else force standard zp 
;•>a lways perform transfer 
j&wi tch in alternate zp 
;•)off we go 

24S 
246 • 

DS C30RG+$F4-*,0 ;rarl to interrupt stuff 

247 * Thia is where the interrupt ro utine retu rns t o . 
248 * At this point the ROH is not necessarUy switched in so ... 
249 • 
250 IRQDONE STA SC081 ; read ROM, write RAH 
2S l JHP IRQOON£2 ;and 1ump to ROH 
2S2 • 
253 * This is the main entry point for the interrupt 
254 * handler . This switc hes in the interna l ROH and 
255 * jumps to the main pttrt o f the interrupt handler 
2S6 * at $C400 . 
2 S7 • 
258 irq blt rdcxro"" ;Test internal or ext et'nal r am 
259 s ta setintcxrom ;Force in ROM t o get to interrupt handler 
260 • 
261 * Fall into $C400 which i s now switched in!! 
262 • 

20 INCLUDE IRO 

I * 
2 * Here is the main interrupt handler 
3 • 
4 * ****111 ** ••• ******** •••• ** ••• *** * •••••••• 
5 newt rq equ 
6 cld ;fllake no assumptions!! 

C401 JR 
C402 30 01 C40S 
C404 18 
C40S 48 
C406 4S 
C407 48 
C40S SA 
C409 BA 
C40A ES 
C408 EB 
C40C ES 
C40D E8 
C40E 48 
C40F 9S 
C410 4S 
C411 BD 00 0 1 
C414 29 10 
C416 AS 
C4l 7 
C417 AD 18 CO 
C41A 20 IC CO 
C41D 29 80 
C41F FO OS C426 
C421 A9 20 
C423 SD S4 CO 
C426 2A 
C427 : 2C 13 CO 
C42A : 10 OS C431 
C42C:SD 02 CO 
C42F :09 20 
C43 1 : 2C 14 CO 
C434: 10 OS C43B 
C436:8D 04 CO 
C439:09 10 
C438: C43B 
C43 8 :2C 12 CO 
C43E: 10 OC C44C 
C440:09 OC 
c442 :2C 11 CO 
C44S : 10 02 C449 
C447 : 49 0 6 
C449 : SD 81 CO 
C44C:2C 16 CO 
C44F:10 OD C4SE 
C451 : BA 
C452 :SE 0 1 01 
C4SS : AE on 01 
C4S8:9A 
C4S9:SD OS CO 
C4SC:09 SO 
C45E :SS 
C45F :30 OC C46D 
C461 :S5 44 
C463 :68 

b11i irqintcx 
clc 

10 irq lntcx pha 
11 pha 
12 pha 
13 txa 
14 tsx 
15 inx 
16 lox 
17 lmt 
18 inx 
19 pha 
20 tya 
21 pha 
22 Ida $ 100,x 
23 and #$10 
24 tny 
25 * Now test & set the 
26 lda rd80co l 
2 7 and rdpage2 
2S and #$SO 
29 beq i rq2 
30 lda #$20 
31 BtR txtpagel 
32 lrq2 r o l A 
33 bit rdram['d 
34 bpl irq3 

;C• l if internal slot Apace 

;S11ve A on s tack instead of $45 
;Hake room for rts if needed 

;Save X 
;Ge t stack po i nter for BRX bit 
;Can 1 t do add cause we need C 

;and Y 

;Get status for break test 
; A • $10 lf break 

;Save it for later 
state of the aachlne. Don't alter Y 

;Test for 80 store and page 2 

Make it 0 or $RO 
Branch if no change needed 
Set shifted page 2 reset bit 
Set page 1 
Align bit & shift in slotcx bit 
Are we reading from aux ram? 
Branch if maio ram read 

35 sta rdmalnral'll P.lse. switch aain in 
36 ora 1$20 
37 1rq3 bit rdramwrt 
3S bpl i rq4 
39 sta wr11a l n['am 
40 ora #$10 
41 lrq4 equ 
42 irqS blt rdl c r am 
43 bpl i rq7 
44 ora #$0C 
45 
46 
47 
48 t rq6 
49 lrq7 
so 
51 
S2 
53 
54 
SS 
S6 
57 trqB 
SS 
S9 
60 

b i t 
bpI 

sta 
bit 
bpi 
tsx 
s t x 
Idx 
txs 
sta 
ora 
dey 

bmi 
sta 
pla 

rdlcbnk2 
irq6 
#$06 
r o11in 
rdalt.zp 
irq8 

$101 
$100 

setstdzp 
#$ ij0 

lrq9 
111acstat 

and rP.cord the event 
Do the sallle for ra11 write 

;Deter,.lne if langul!lge c ard act.iv@ 

Se t s two b i t s. Second i s redundant 
if INC used to restore . 
Branch if not page 2 of $DODO 
Set bits for page 2 
Enable ROM STA leaves write enable alo ne 
La s t .•• and very impo rtant 
1 f a lte rna te stack 
;store current s tack poi nter at $l01 

;Retreve main stack poi nter from SlOO 

;Mark s ta ck swit c hed 
: Was it a bre"k? 

;Save state of machine 
;Re store reJ!;iStP. rs 



V> C464 :AB 61 tay 
-' C465•68 62 pla 
0- C466:AA 63 tax 

C4AC:9A 114 txa ;Re•tore stack pointer 
C4AD:8A ll5 txa ;Make return address on stack point to code on stack 
C4AE:69 03 ll6 adc #3 ;C • 0 fr0111 earlier adc 

C467 •68 64 pla 
C468•68 65 pla ;A stored where RTS address would go 
C469•68 

C480 :AA 117 tax 
C4Bl :38 118 •ec 
C482:E9 07 ll9 sbc #7 ;Point to where code starts 

66 pla C484:9D 00 01 120 sta $100,x 

C46A:4C 47 FA 67 jmp newbreak ;Go to normal break routine stuff 
C46D:48 68 irq9 pha ;Save state of machine on stack 
C46E:AD F8 07 69 lda mslot ;Save mslot 

C4B7 :E8 121 inx 
C4B8:A9 01 122 lda #$1 
C4BA:9D 00 01 123 sta $100 ,x 

C471 :48 70 pha 
C472 :A9 CJ 71 ldll #(irqdone ;Save return irq address 

C4BD:68 124 pla 
C4BE:AA 125 tax 

C474 :48 72 pha 
C47S:A9 F4 73 lda #)irqdone ;so when interrupt does RTI 

C4BF:68 126 pla 
C4CO :60 127 rts ;Go to code on stack 

C477 :48 74 pha ; It returns to irqdone 
C478 :08 75 php ;Status for user's RTI 
C479 :4C 74 FC 76 .1mp irquser ;Off to the user 
C47C: 77 * The user 1 s RTI returns here C4Cl:83 88 88 129 irqtble dfb )lcbank2,>lcbankl,>lcbankl 

C47C: 78 * BEWARE C4C4:05 03 55 130 dfb )wrcardram,)rdcardram,>txtpa~e2 

C47C: 79 * The rom must be reenabled with a LOA romin C4C7: 21 INCLUDE DIAGS 

C47C: 80 • This way if the LC was write protected, it still is 
C47C: 81 • if it was wrlte enabled, it still is 
C47C: 82 • if it was being write enabled ( 2 ldas), it still will be 
C47C: 83 • The restore loop uses an INC because some of the switches are read 
C47C: 84 * and some are write. It must be an INC abs ,x since both the 6502 and 
C47C: 85 * the 65C02 do two reads before the write. 

----- NEXT OBJECT FILE NAME IS REFLIST. l 
C600 C600 1 ORG C30RG+$300 
C600 2 * These routines test all 64K RAH, as well as the 64K on an Auxiliary 
C600 3 * 'memory card (when present). With the exception of the INTCXROM switch 
C600 4 * of the IOU, all combinations of the IOU switches are tested and ver-
C600 5 * ified. A.11 configurations of the MMU switches are also tested. 

C47C:AO 81 CO 86 irqfix lda romin ;Must be lda ! 
C47F:68 87 pla ;Recover machine state 
C480:10 07 C489 88 bpl irqdnl ;Branch if main ZP 
C482 :80 09 CO 89 sta setaltzp 
C485 :AE 01 01 90 ldx $101 ;Get alt stack pointer 
C488:9A 91 txs 

C600 6 * 
C600 7 * In the event of any failure, the diagnostic is halted. A menage 
C600 8 * is written to screen memory indicating the source of the failure . 
C600 9 * When RAM fails the message i8 composed of "RAM ZP" (indic:>lltlng failure 
C600 10 *detected in the first page of RAH) or "RAM" (meaning the other 63.75K), 
C600 11 *followed by a binary representation of the failini;i: bits set to "l". 

C489 :AO 06 92 irqdnl ldy #$06 ;Y • index into table of switch addresses 
C48B : l0 06 C493 93 irqdn2 bpl irqdn3 ;Branch if no change 
C48D:BE Cl C4 94 ldx irqtble,y ;Get soft switch address 
C490:FE 00 CO 95 inc $COOO,x ;Hit the switch. NO PAGE CROSS! 
C493:88 96 i rqdn3 dey 

C600 12 * For example, "RAM 0 l l 0 0 0 0 O" indicates that bits 5 and 6 were 
C600 13 *detected as failing. To represent auxiliary memory, a "*" symbol is 
C600 14 * printed preceeding the message. 
C600 15 * 
C600 16 *When the MMU or IOU fail, the message is simply "HHU" or "IOU". 

C494:30 03 C499 97 bmi irqdn4 
C496:0A 98 asl A ;Get next hit to check 
C497:00 F2 C48B 99 bne irqdn2 
C499:0A 100 irqdn4 asl A ;C • l if internal Rlot space 
C49A:OA 101 .. 1 A 

C600 17 * 
C600 18 * The test will run continuously for as long as the Open and Closed 
C600 19 * Apple keys remain depressed (or no keyboard is connected) and no 
C600 20 * failures are encountered. The message "System OK" will appear in 
C600 21 * the middle of the screen when a successful cycle has been run and 

C49B:68 102 pla ;Restore the registers C600 22 * either of the Apple keys are no longer depressed. Another cycle 

C49C :A8 103 tay 
c49o:BA 104 tox ;Save the stack pointer 
C49E :A9 40 105 lda #$40 ;RTI opcode 

C600 23 * may be initiated by pressing both Apple keys again while this message 
C600 24 * is on the screen. To exit diagnostics, Control-Reset must be pressed 
C600 25 * without the Apple keys depressed. 

C4AO :48 106 pha 
C4Al :A9 CO 107 lda #<setslotcxrom 

C600 26 * 
C600 C051 27 TEXT equ $C051 

C4A3:48 108 pha 
C4A4:A9 06 109 lda #>setslotcxrom 

C600 0009 28 IOUIDX equ $09 
C600 0001 29 MKUIDX equ $01 

C4A6:69 00 llO adc no ;Add 1 if internal dot space 
C4A8 :48 lll pha 
C4A9:A9 8D ll2 lda #$80 ;STA setslotcxrom 

C600 OSB8 30 SCREEN equ $588 
C600 COOO 31 IOSPACE equ $COOO 
C600 32 * 

C4AB:48 ll3 pha C600 C600 33 DIAGS equ 



C600 BD SO CO 34 Sta $COSO C6SC lB 87 11e111.5 clc 
C603 35 • Test Zero-Page, then all o f mein.ory. Report errors when e ncounte red. C6SD 70 84 C7 BB adc ntbl ,x 
C603 36 * Accu•ulato r can he anything on e ntry. ~11 registers used, but no stack . C660 9 1 02 89 sta ($02) , y 

C603 37 * Addresses between SCOOO and $CFFF are 111.apped to main SDOOO bank. C662 CA 90 dex ;keep x in the ran~e 0-4 
C603 3 8 * Auxillary 64K i.s also tested if present. C663 10 02 C667 91 bpi me"6 

C66~ AZ 04 92 ldx 14 
C603: AO 04 40 TSTZPG ld y 1$4 C667 CB 93 • e•6 iny :all 256 filled yet? 
C60S :A2 00 41 ldx 10 C668 00 F2 C6SC 94 bne memS ;branch if not 
C607 '18 42 zpt clc ;fill zero pa~e with a pattern C66A E6 0 1 9S inc 1 ;bu•p pajte # 
C608 : 79 84 C7 43 ad c ntbl,y C66C 00 CC C63A 96 bne mem2 ; loop throuRh $0100 t o SPFOO 
C608 : 95 00 44 • t• $00,x 
C60D:EB 4S inx 
C60E :OO F7 C607 46 bne •• 1 :after all byte ~ filled , C66E:E6 0 1 98 inc $01 ; point to page l again 
C610 : 18 47 zp2 clc ; ACC has ori.Rinal value again . C6 70 : AB 99 mem7 tay j save ACC in Y for now 
C611 :79 84 C7 4B adc ntbl ,y ;so values can be te11ted C671 : AD Bl CO 100 lda $COB3 ;antic ipate not SCOOO range .. . 
C614:Dl 00 49 CDP $00,x C674 :AD Bl CO 101 lda $COB3 
C61 6 : DO 10 C62B so bne ZPERROR ;branch tf memo r y htlert C677:M 0 1 102 Id s $01 ;get page address 
C618:E8 Sl inx C679:29 FO 103 and #$FO ; test for $CO-$CF range 
C619 :DO FS C610 sz bn~ •p2 ;loop until all 256 bytes teated C67B:C9 CO 104 cmp 1$CO 

C61B :6A 53 ror a ;change ACC fllO l oca tion $FF wU 1 change C670:DO 0 9 C688 lOS bne ... .a ; branch lf not • . . 
C6LC:2C 19 CO S4 bit RDVBLBAR ; uflle RDVBLBAR for .11 little randoaness •• • C67F:AD 8B CO 106 lds $COBB ;select priaary $0000 space 
C6LF:l0 02 C623 5S bp i •Pl C682:AS 0 1 107 lda $01 
C621 :49 AS S6 eor , $AS C684 :69 OF 108 sdc l$F ;Plue cury -+$l0 
C623 :BB 57 zp3 dey ;use a different pattern now C686:00 02 C68A 109 bne me r.9 ;branch alvaya t aken 
C624:10 El C607 SB bpi •pl ; br.11nch to retest with o ther value C688 : M 01 HO me118 Ida $01 
C626:30 06 C62E S9 bmi TSTMEH ; branch always C6BA:85 0 3 11 1 11M!a9 Sta $03 

C6BC :98 112 tya ; restore pattern to ACC 
C680:AO 00 113 ldy 1$00 ;fill this page with the pattern 

C628 Sl 00 61 ZPERROR e o r $00,x ;which bits are bad1 C68F: lB 114 tteftlA clc 
C62A l B 62 clc ;indicate zero page failure C690: 7D B4 C7 l lS adc ntbl , x 

C62B 4C CD C6 63 .hP BADBITS C693:Sl 02 116 eor ($02),y 

C62E C62E 64 TSTMEK equ . C69S : 00 3S C6CC 117 bne KEKERROR ;if any bits are different, give up!! I 
C62E 86 01 65 stx $01 C697: Bl 02 118 lda ($02) ,y ;restore correct pattern 
C630 86 0 2 66 ltX $02 C699 :CA 119 dex ;keep x in the range 0-4 
C632 B6 0 3 67 stx $03 C69A : 10 02 C69P. 120 hol ... ~B 
C634 A2 04 6B ldx #4 ;do RAM $100-SFFFF five times C69C:A2 04 121 ldx #4 
C636 B6 04 69 stx $04 C69E:CB 12 2 me .. s iny ;all 256 filled yet ? 

C63B E6 0 1 70 11et1l inc $01 ;point to page l first C69F:OO EE C68F 123 bne -•A ; branc h if not 
C63A AB 71 me•2 tay ;save ACC in Y fo r now C6Al: E6 01 124 inc 1 ;buap page I 
C63B 80 83 CO 72 ata $COB3 ;anticipate not $COOO u .n111:e ••. C6A3 :00 CB C670 12S bne .... 1 ; loop through $0100 to $FFOO 
C63E 80 Bl r.O 73 ... $C083 C6M :6A 126 ror . ;change ACC for next pass 
C641 M 0 1 74 lda $01 tRet p11ge address C6A6:2C 19 CO 127 bit RDVBLBAll ; use R.DVBLBAR for a little randomness ••• 
C643 29 FO 7S and l $FO ;teat for SCO-SCF r ange C6A9:10 02 C6AD 12B bpl memC 

C64S r.9 CO 76 cmp 1$CO C6AB:49 M 129 eor 1$M 
C647 DO OC C6SS 77 bne mem3 ; branch tf not •• • C6AD:C6 04 130 ....c dee $04 ihave ~ passes been done yet? 
C649 AO 88 CO 78 lda $COBB C6AF: 10 87 C638 131 bpl 11e11l ;branch if not •• • 
C64C AD BB CO 79 lda $C08B ;select primary $0000 apace 
C64F M 0 1 BO lda $01 
C6Sl 69 OF 81 adc 1$F ;Plus carry -+$10 C681 : AA 133 TAX ;save ace 
C6S3 DO 02 C6S7 BZ bne ~·m4 ;branch alway1 taken C6B2:20 8D C9 134 JSR STAUJ< ;aet aux ••ory & write SEE to $C00 , $800 
c6SS M 01 83 llU!!ll) lda $01 C6BS :DO 07 C6BE 13S BNE SWCHTSTl ;•>not 128K 
C6S7 BS 03 84 mem4 sta $03 C687 :OE 00 OC 136 ASt. scoo ; ahift teat byte 
C6S9 98 85 tya ; restore pattern t o ACC C6BA:OA 137 ASt. A 
C6SA AO 00 B6 ldy 1$00 ; fill thia page with the pattern C68B : CD 00 OC 13B CKP $COO ;check .e11ory 

c..> ..... 
....... 



(,.) _. 
CX> 

C6BE:DO 76 C7J6 
C6CO : CD 00 OS 
C6CJ:FO 71 C736 
C6C5 :SA 
C6C6:SD 09 CO 
C6C9 : 4C 03 C6 
C6CC :38 
C6CO:AA 
C6CE:AD 13 CO 
C6Dl :88 
C6D2: 10 03 C607 
C604:2C B4 Cl 
C6D7: A9 AO 
C609:AO 06 
C60B:99 FE BF 
C6DE:99 06 CO 
C6El :SS 
C6E2 :SS 
C6E3:DO P6 C6D8 
C6E5 :SD 51 CO 
C6ES:SO 54 CO 
C6EB: 99 00 04 
C6EE :99 00 05 
C6Fl :99 00 06 
C6F4: 99 00 01 
C6Fl :CS 
C6F8:DO Fl C6E8 
C6FA:8A 
C6FB:PO 27 C724 

139 SWCHTSTl BNE SWCHTST 
140 CMP $800 
141 SEQ SWCHTST 
142 txa 
143 STA SETALTZP 
144 Jap TSTZPG 
145 HEK&RROR sec 
146 BADBITS ta.x 
14 7 lda RDRAHRD 
148 clv 
149 bpl bbitsl 
150 bit setv 
151 hbltsl lda #$AO 
152 ldy #6 

;•)not l 28K 
; look for shadowing 
;•>not 128K 

;swap in alt zero page 
; and test it! 
;indicate ma i n ran f>1.ilure 
;save bit pattern in x for now 
;determine if pri•ary o r auxiliary RAtl 
;with V-FI.£ 
;branch if primary bank 

;try to clear video screen 

1S3 c.lrsts 
154 

sta 
St a 
dey 
dey 
bne 
sta 
Sta 

IOSPACE-2 ,y 
IOSPACF.+6 ,y 

155 
156 
151 
158 
159 f 

160 clrs 
161 sta 
162 sts 
16) S CA 

164 iny 

c l rs ts 
TEXT 
TXTPAGEl 
$400 ,y 
$500.y 
$600 .y 
$100.y 

165 bne clrs 
166 ex.a 
167 beq BADSWTCH 
168 ldy 13 

;test for switch test failure 
;branch tf it was a switch 

C6FO:A0 03 
C6fF:BO 02 
ClOI :AO 05 

C703 169 bes badmain ;branch if ZP ok 

<:703 :A9 AA 
C105: 50 03 ClOA 
ClOl :SO BO 05 
C70A: 89 EA C7 
C70D:99 Bl 05 
c710:88 
C7ll:10 F7 C70A 
C71J:AO 10 
C715 : 8A 
C7l6 :4A 
C717:AA 
CllS:A9 SR 
C71A:2A 
CllB:99 B6 05 
C71E:88 
Cl lF:88 
Cl20:00 Fl C715 
C722:FO FE C722 
C724 :AO 02 
C126:B9 FD Cl 
Cl29 :90 03 C72E 
C72B:B9 Fl Cl 

17 0 ldy #5 
17 I badmain ldA #$AA 
172 bvc badprim 
173 sta screen-8 
174 badpri• lda rmess ,y 
175 sta screen-7 .y 
176 dey 
177 bpl badprill 
178 ldy 1$ 10 
179 bblts2 
180 

txa 
lsr a 

181 tllX 
182 lda 1$58 
183 rol a 
184 sta screen-2 , y 
185 <'ley 
186 dey 
187 bne bbits2 
188 hangx beq hangx 
189 BADSWTCH ldy #2 
190 bswtchl lda Amess .y 

;msrk aux report with An asterisks 

;message is either "RAM" or "RAM ZP" 
;print bits 

;bi t s are printed A.S ascii 0 or l 

;hanp; forever and ever 

191 bee bswtch2 ;branch if MMU in error 
192 lda smess+3,y ;ehe indicate IOU error 

C72E:99 B8 05 193 bswtch2 eta screen,y 
C731 :88 194 dey 
C732:10 F2 C726 195 bpl bswtchl ;print "MMU" or "IOU" 
C734 : 30 FE C734 196 hani;ty bn.i hangy jbnnch forever 

C736 AO 01 
C738 A9 7F 
C73A 6A 
C738 BE B9 C7 

198 SWCHTST ldy 
199 swtst l lda 
200 swtst2 r o r 
201 ldx 

IMMUIDX 
#$7F . 
SWTBLO,y 

;set switches of the IOU/MMU to match Accumul11to 

C73E FO OF C74F 202 beq swtst4 ;branch i.f done setting AWitches 
C140 90 03 C745 203 bee swtst3 ;bran ch if setting switc h t o 0-state 
Cl42 BE C9 Cl 
C745 90 FF BF 
c14B ca 

204 ldx 
205 swtst3 
206 

•ta 
!ny 
bne 

SWTBLI ,y ;else ,i;i;et index t o set switch t o L 
IOSPACE-1,x ;set switch 

C749 DO EF C73A 207 
C74B 208 * 
C74B AE 30 CO 209 click 
C74E 2A 210 
C74F 88 211 swtst4 
C750 BE 09 C7 212 
C753 FD I J C16S 213 
C155 30 F4 Cl4B 214 
ClSl 2A 215 
C158 90 01 Cl61 216 
ClSA IE 00 CO 217 
ClSO 90 11 C776 21S 
C75F 80 EE C74F 2 19 
C761 lE 00 CO 220 swtstS 
C764 BO 10 C776 22 1 
C7fi6 90 E7 C74P 222 
C768 223 * 
C768:2A 
C769:C:8 
Cl6A:38 
C76B :E9 0 1 
C76D:BO CB 
C76F:88 
C770 :DO 08 
C772:AO 09 
C774:00 C2 
C776 : 

224 swtst6 
225 
226 
227 

C73A 228 
229 

C77D 230 
23 1 

C73S 232 
233 * 

swtst2 

Ldx $C030 
rol a 
dey 
ldx RSWTBL, y 
beq swtat6 
biai c lick 
rol 
bee 
asl 
bee 
bes 
asl 
bes 
bee 

. 
swtst5 
IOSPACE,x 
swerr 
swtst4 
I OSPACE,x 

swtat4 

rol a 
!ny 
sec 
sbc /Jl 
bes swtst2 
dey 
bne BIGLOOP 
ldy ,IOUIDX 
bne swtst l 

;branch always taken ••• 

jnow verify the settings .1ust mad e 
; branch if done this pass 
;branch if this switch no to be verified. 

;br.11nch always 

;branch alw8ys 

;restore ori,i;i;inal value 
; Bnd IOU/HMU index 

; try next pattern 

;was KMU just tested? 
;branch if IOU was just tested 
:else, go test IOU. 
;branch always taken ••• 

C776:A2 00 
C778:CO OA 
C77A:4C D7 C6 
C770:46 80 
C77F:DO BS 
C781 : A9 AO 
C783 :AO 00 
Cl85:99 00 04 
C788 :99 00 05 
C78B:99 00 06 
C78E:99 00 01 
C1 9 I :C8 

234 swerr ldx #0 ;indicate s witch error 
235 cpy hlOUIDX+ l ; set carry if IOU was cause 
236 _1mp bbitsl 
237 BIGLOOP lsr $80 

C] 36 238 bne SWCHTST 
239 blp2 lda #$ AO 
240 ldy 10 
241 blp3 
242 
243 
244 
245 

sta $400 ,y 
sta $500,y 
sta $600,y 
ata $700,y 
!ny 

;clear screen for success •essage 



C792 :DO Fl C785 
C794 :AD 61 CO 
C797: 2D 62 CO 
C79A:OA 
C79B:E6 FF 
C79D:A5 FP 
C79P:90 03 C7A4 
C7Al:4C 00 C6 
C7A4 : 
C7A4:AD 51 CO 
C7A7 : AO 08 
C7A9:89 F6 C7 
C7AC:99 B8 05 
C7AF:88 
C7BO:l0 F7 C7A9 
C7B2: 30 EO C794 
C7B4: 
C7 B4: C7B4 
C7B4 :53 43 28 29 
C789 :00 89 31 03 
C7C9:00 81 31 04 
C7D9:00 11 FF 13 
C7EA: 
C7EA:D2 Cl CD AO 
C7FO: CD CD 05 C9 

C7F6 03 F9 F3 F4 
C7FP C7FF 
C7FF 
C7FF 0001 
C800 
C800 
CBOO 
C800 :4C BO C9 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 
C803 C803 
C803 20 F4 CE 
C806 20 2A CB 
C809 20 2E CD 

U> __, 

'° 

246 
247 blp4 
248 
249 
250 
251 
252 
253 
254 • 
255 dquit 
256 
257 suc2 
258 
259 
260 
261 
262 • 
263 aetv 
264 ntbl 
265 owtblO 
266 swtbll 
267 rswtbl 
268 
269 ['mle&8 

270 SIM!SS 

bne blp3 
LDA $C06l ; test for both Open and Closed Apple 
AND $C062 ; pressed 
asl a ;put result in carry 
INC $FF 
LDA $FF 
bee dquit 
.1•p DIAGS 

lda TEXT ;put success •essal(e on the screen 
ldy #8 
lda success ,y 
•t• SCREEN,y 
dey 
bpl suc2 
bai blp4 ;loop forever 

equ * 
dfb 83,67,43,41,7 
dfb $00 ,$89 ,$31 ,$03 ,$05 ,$09 ,$Ob, $01,$00 ,$83 ,S5 l, $53, $55 ,$57 ,$OF, 
dfb $00 ,$81,$31 ,$04, $06 ,SOA, SOC, $02 ,$00, $84, $52 ,$54 ,$56, $58,$10, 
dfb $00 ,$11 ,$FF ,$13, $14 ,$16 ,$17, $18 ,$00 ,$12, $IA , $ I B,$1C,$ l D,$1E, 
HSB ON 
asc "RAH ZP 11 

asc "HMUIOU" 

272 suc cess asc "System. OK" 
273 zz:zend equ * 

22 INCLUDE C8SPACE 
l DS C80RG-* ,0 ; pad to C800 
2 • 
3 * This entry point is only used by Pascal 1.0 
4 • 
5 JMP PINlTl .0 ;PASCAL 1.0 lNlT 
6 • 
7 * BASIC initialization: 
8 • 
9 * This ls called by the $C3 space only after a PR# ) or 

10 * the equivalent (a JSR $C300) .. 
11 • 
12 * It causes a copy of the SF8 i:t.OH to be plac ed in the 
13 * language card 1f the language card .J.a •witched in and 
14 *the ID byte doesn't rtatch. It uts .up all the · 
15 * 1creenhole variables to support 1u~ .operation. If the 
16 * 80 colunm cArd is detected, it sets things up for 80 column 
17 * operation, else 40 colu11m operation• Then it clears the 
18 * 1creen and prints the character that was in the acc umulator 
19 * upon entry. 
20 • 
21 BAS ICINIT EQU * 
22 JSR COPY ROM ; If LC in• copy F8 to it 
23 JSR C3HOOKS ;out•$C307 , 1n• $C305 
24 JSR D040 ; set full 40-col window 

$OD 
$OE 
$1F,$00 

C80C : A9 01 
C80E: 8D FB 04 
C8ll: 
C8ll: 
C811: 
C811 :20 90 CA 
C814 : 00 08 C81E 
C816:06 21 
C818 : 8D 01 CO 
C81B : 8D OD CO 
C8 1E: 
C81E : 
C81E: 
CBlE: C81E 
C81E:8D OF CO 
C821 : 20 90 cc 
C824 : AC 78 05 
C827 :4C 7E C8 
C82A: 
C82A : A9 07 
C82C :85 36 
C82E :A9 CJ 
C830 :85 37 
C832 : 
C832 : 
C832: 
C832:A9 05 
C834: 85 38 
C836 : A9 C3 
C838 : 85 39 
C83A:60 
C838 : 
C83B:E6 4E 
CB3D : OO 02 C841 
C83F:E6 4F 
C841 : AD 00 CO 
C844 : 10 F5 C83B 
C846 : 80 10 CO 
C849 :60 
C84A : 
C84A : 
C84A : 
C84A: 
C84A : 
C84A : 0003 
C84D: 0000 
s 

C84D 
C84D:4C 50 Cl 
C850 
C850 
C850 
C850 
C850 

25 LDA #M.MOUSE ;init with aouse text off 
26 STA MODE ; Set BASIC video mode 
27 • 
28 * IS THERE A CARD? 
29 • 
30 JSR TESTCARD ;SEE IF CARD PLUGGED IN 
31 BNE CLEARIT ;•>CT'S 40 
32 ASL WNDWDTH ; SET 80-COL WINDOW 

33 STA SET80COL ; ENABLE 80 STORE 
34 STA SETBOVID ; AND 80 VIDEO 
35 • 
36 * HOME & CLEAR: 
37 • 
38 CLEARIT EQU * 
39 STA SETALTCHAR ;SET NORM/INV LCASE 
40 JSR X.FF CLEAR IT 
41 LDY OURCH set up cursor for store 
42 JMP BPRINT always print a character 
43 • 
44 C3KOOKS LDA #)BASICOUT ;set output hook first 
45 STA CSWL 
46 LDA l <CNOO 
47 STA CSWH 
48 • 
49 * CJIN is called by IN#O if CSWH • #$C3 
50 • 
51 C3IN LOA #>BASICIN ;set input hook 
52 STA KSWL 
53 LOA #(Cl()O 
54 STA KSWH 
55 RTS ;exit with A• SC3 for INIO stuff 
56 • 
57 GETKEY INC RNDL ;BUMP RANDOM SEED 
58 BNE GETK2 
59 INC RNDH 

60 GETK2 LDA KBD ;KEY PRESS? 
61 BPL GETKEY ;•)NOPE 
62 STA KBDSTR8 ;CLEAR STROBE 
63 RTS 
64 • 

65 **************************************** 
66 • 
67 * PASCAL 1.0 INPUT HOOK: 
68 • 
69 OS C80RG+$4D-* ,0 ;pad to 1 . 0 hooks 
70 IFNE *-C80RG-$4D ;ERR. IF WRONG ADDR . 
71 FAIL 2, 'C840 HOOK ALIGNMENT' 
72 PIN 
73 JMP JPREAD :•>GO TO STANDARD READ 

7 4 **************************************** 
75 • 
76 * CSETUP compensates for everythi ng that the user 
77 * can do to change the cursor status : poke CV . CH, 
78 * OURCH, WNDWDTH. It up'1ates ·the video firmware's 



c..> 
tV 
0 

CB50 
CB50 
CB50 
C850 
ca50:A5 25 
CB52 :BD F8 05 
CB55: A4 24 
C857 :CC 78 04 
CB5A:FO 03 ca5F 
ca5C:aC 78 05 
CB5F:A5 21 
CB61: 18 
C862 :ED 78 05 
ca65: BO 05 ca6C 
CB67: AO 00 
CB69:BC 78 05 
C86C :AC 78 05 
C86F :60 
C870: 
ca70: 
ca70: 
C870: 
C870: 
C870: 
CB70: 
CB70: 
C870: 
C870: 
C870: 
CB70: 
CB 70: A4 35 
CB72: Ia 
CB73:BO FE CB73 
ca74: C874 
C874:3B 
C875;8D 78 06 
C878:9a 
C879 :4a 
C87A:8A 
C87B:48 
ca 7C: ca7c 
CB7C: 80 SE CBDC 
0000: 0000 
ca7E: 
can: 
C87E: 
CB7E: 
CB7E: 
C87E: 
CB7E: 
cBn:20 so ca 
CBBI :AD 7B 06 
caB4 :C9 BD 
caB6: DO I B caAO 

79 * versions of these values for its own use. 
80 'Ill COPY USER 1 S CURSOR IF IT DIFFERS FROM 
Bl * WHAT WE ·LAST PUT THERE: 

B2 * 
a3 CSETUP 
84 
85 
86 
87 
8B 
89 CS2 
90 
91 
92 
93 
94 
9S CS3 
96 
97 * 

LDA CV 
STA OURCV 
LDY CH 
CPY OLDCH 
BEQ CS2 
STY OURCH 
LDA WNDWDTH 
CLC 
SBC OURCH 
BCS CS3 
LDY #0 
STY OURCH 
LDY OURCH 
RTS 

;set up OURCV 

oGET IT 
; IS IT THE SAME? 
;•>YES, USE OUR OWN 
;update our cursor 
;cursor horizontal must not 
;be greater than window width 
;if it is, then · put cur11or 
; at left edge of window 

;exit with Y • CH 

9B * BIN and BOUT nre used when charncters . are 
99 * input and output by the $F8 ROM while BOVIO 

100 * is on . They c1tnnot use the $C3 entry points 
101 * becauRe that switches in the $C8 space, causing 
102 * poR~ible conflict wlth other $C8 users. 
103 • These routines are only called by the $Cl00-$C2FF space. 
104 * 
105 * These entry points will only work- if the card was 
106 * first in1.thllzed using a PRJ3. 80 columns will not 
107 * work simply by turning on the BOVIO flag. 
lOB * 
l 09 BOUT LDY SAVY l 
110 CLC 
111 BCS * 
ll2 ORG *-1 
l 13 BIN SEC 
114 STA CHAR 
115 TYA 
116 PHA 
117 TICA 
Ila PHA 
119 CBBASIC EQU • 
120 BCS BINPUT 

I TEST EQU 0 
23 LST ON,A,V 
24 INCLUDE BPRINT 

l * 

;load Y stuffed hy $F8 ROM 
;signal an output 
;skip SEC 

;signal an input 
;save the char 
;save Y 

;11>av@ X 

;BASIC IN/O\JI' 
;•)input a character 
; REAL VERSION 

2 * This is the place where characters printed usin~ the 
3 * csw· hook are actually printed (or executed if they are 
4 * control characters). 
s • 
6 BPRINT 
7 
a 
9 

JSR CSETUP 
LOA CHAR 
CMP 11$BD 
BNE NOWAIT 

setup user cursor 
GET CHARACTER 
IS IT C/R? 
•)don't wait, OURCH ok 

C888 AE 00 CO 
ca8B IO 13 caAO 
C880 EO 93 
C88F DO OF CaAO 
C891 2C IO CO 
C894 AE 00 CO 
C897 10 FB C894 
C899 E:O 83 
C89B FO 03 C8AO 
C89D 2C IO CO 
C8A0 29 7F 
C8A2 C9 20 
C8A4 BO 06 caAC 
CH6 20 DZ CA 
C8A9 4C BD CB 
C8AC 
CBAC 
C8AC 
CBAC: C8AC 
C8AC:AD 7B 06 
C8AF:20 38 CE 
C8B2 
CBB2 
C8B2 
C8B2 : C8 
C8B3 : BC 7B OS 
C8B6:C4 2 1 
C8B8:90 03 CBBD 
C8BA:20 51 CB 
C8BD 
C8BO 
C8BD 
C88D 
C8BO:AO FB 04 
C8C0 : 29 F7 
C8C2 : 80 FB 04 
C8CS: AD 7B 05 
C8C8:2C I F CO 
CBCB : l0 .02 C8CF 
C8CD:A9 OD 
C8CF:BS 24 
C8Dl :BD 7B 04 
caD4 :68 
C8D5 :AA 
C8D6:68 
C8D7 :AB 
C8D8:AO 7B 06 
C8DB:60 
C8llC 
C8DC 
C8DC 
C8DC 
C8DC 
caoc:A4 24 

IO LDX KBD 
l l BPL NOWAIT 
12 CPX 1$93 
13 BNE NOWAIT 
14 BIT KBDSTRB 
15 KBDWAIT LOX KBO 
16 BPL KBOWAIT 
l 7 CPX H$83 
18 BEQ NOWAIT 
19 BIT K8DSTRB 
20 NOWAIT AND #$7F 
21 CMP #$20 
12 llCS 8PNCTL 
23 JSR CTLCHARO 
24 JMP CTLON 
25 * 

IS KE'l PRESSED? 
NO 
IS IT CTL-S? 
NO, IGNORE IT 
CLEAR STROBE 
WAIT FOR ·NEXT KEYPRESS 

; IF CTL-C, LEAVE IT 
; IN THE KBD, BUFFER 
;CLEAR OTHER CHARACTER 
;drop possible ht bit 
; IS IT CONTROL · CHAR? 
:->NOPE 
jexecute CTL if H • .CTL ok 
;•>enable ctl chrs 

26 * · NOT A CTL <:ti.AR. PRINT IT. 
17 * 
28 BPNCTL F.QU * 
29 LOA CHAR ;get char (all 8 bits) 
30 JSR STORCHAR ;and display it 
31 * 
32 * 
33 * 
34 
35 
36 
37 
38 
39 * 

BUHP THE CURSOR HORIZONTAL: 

INY 
STY OURCH 
CPY WNDWDTH 
BCC CTLON 
JSR X.CR 

bump it 
are we past the 

end of the line? 
•)NO, NO PROBLEM 
YES, DO C/R 

40 * H.CTL is set by RDCHAR and cleared here, after each 
41 *character -is displayed. 
42 * 
43 CTLON LOA MODE ;enable printing · of control chan 
44 AND #25S-H.CTL 
45 STA MODE 
46 8IORET LDA OURCH 
47 BIT RDBOVIO 
48 BPL SETALL 
49 LDA RO 
50 SETALL .STA CH 
51 STA OLDCH 
52 GETREGS PLA 
53 TAX 
S4 PLA 
SS TAY 
56 LDA CHAR 
S7 RTS 
25 INCLUDE BINPUT 

l * 

get newest cursor position 
IN 80-MOOE? 
•)no, set other cursors 
pin CR to 0 for BO columns 

; REMEMBER THE SETTI!I; 
;RESTORE 

;X AND Y 

;RETURN TO BASIC 

2 * BASIC input !.. e ntry point called by entry point in the 
3 * $CJ space . ·-,This is the way things normally happen. 
4 * 
5 BINPUT LDY CH 



U> 
~ 

CBDF. : AD 78 06 
CBEI :91 28 
CBE3: 20 50 CB 
CBE6: 20 26 CE 
CBE9:20 38 CB 
C8EC:8D 78 06 
CBEF : 20 26 CE 
C8F2 :AB 
C8F3: 
C8F3 : 
C8F3: 
CBF3 : 
C8FJ: 
C8F3: 
C8F3: 
CBF3 : 
C8F3 : AD FB 04 
C8F6:29 08 
C8F8 : F0 CB C8C5 
C8FA:CO BD 
C8FC:DO 08 C906 
C8FE: AD FB 04 
C901 : 29 F7 
C903: 8D FB 04 
C906: C906 
C906:CO 98 
C908 : FO 11 C91B 
C90A: 
C90A : 
C90A: 
C90A:CO 95 
c9oc : DO s7 cacs 
C90E:AC 78 05 
C911:20 44 CE 
C914 : 09 80 
C916:8D 78 06 
C919 : DO AA C8C5 
C91B: 
C918: 
C91B: 
C91B: 
C91B: 
C918 : 
C91B: 
C91B : 
C91B : 
C918: 
C918: 
C918: 
C918: 
C918 : 
C91B: 
C91B: 
C91B: 

LD.0. CHAR 
STA (BASL), Y 
JSR CSETUP 

9 B. INPIIT JSR INVERT 
get newest cursor 
invert that char 
GET A KEY LO JSR GETKEY 

1 \ ST.<. CHAR SAVE IT 
12 JSR INVERT REMOVE CURSOR 
13 TAY ;preserve acc. 
14 • 
15 * On pure input 1 al"\ uninterpreted character code should 
16 •be returned. If M.CTL is set, however, escape functions 
17 * are enabled, and CTL-U causes the character under the 
18 * cursor to be picked up from the screen. 
l 9 * M.CTL is set whenever a c haxacter is requested -using 
20 * RDCHAR in the $F8 ROM. 
21 • 
22 
23 
24 
25 
26 
27 
28 

·29 

LDA MODE 
AND #M.CTL 
BEQ 
CPY 

BIORET 
#$80 

BNE NOTACR 
LDA MODE 

; is escape mode enabled? 

;•>no,r~turn 

;was it a CR 
;•)nope, not 3 CR 

A~D •# 255--M.CTL ;else end of · line ... 
STA M.ODE ; disable escape 

30 NOTACR EQU * 
31 
32 
33 • 

CPY #$98 ;ESCAPE KEY? 
BEQ ESCAPIN:; ;~)YES IT IS 

34 * Not an e~cape sequence. Check for control-u. 
35 • 
36 
37 
38 
39 
40 
4 1 
42 
43 • 

CPY 
BNE 
LDY 
JSR 
ORA 
STA 
BNE 

8$95 
BIORET 
OURCH 
PICK 
P$80 
CHAR 
B!ORET 

;is it · control-U? 
;no, return to caller 
;$!;et horizontal posit i o n 

.;and pick up the char 
;always pick as normal 
;save keystroke 
;•>(always) return to ca ller 

44 * Start an escape sequence. If the- next character 
45 * pressed is one of the following, it is executed. 
46 * Otherwise it is ignored. 
47 • 
48 • 
49 • 

-50 • 
51 • 
52 • 
53 • 
54 • 
57 • 

@ - hoine & clear 
E - clear to end of line 
F - clear to end of screen 
1 - move cursor up 
J - move cursor left 
K - move cursor right 
M - move cursor down 
4 - enter 40 column mode 

58 * 8 - enter 80 column mode 
59 • CTL-D- disable the printing of control characters 
60 * CTL-E- enable the . printing of control characters 
61 * CTL-Q- quit (PR#O/IN#O) 

C9lB: 
C91B: 
C9l B: 
C91B: C91B 
C9lB:20 Bl CE 
C9lE:20 3B ca 
C921: 20 C4 CE 
C924 : 20 14 CE 
C927 :29 7F 
C929:AO 10 
C92B:D9 7C C9 
C92E: FO 05 C935 
C930 :88 
C93l: 10 F8 C92B 
C933:30 OF C944 
C935 : 
C935 : C935 
C935 : B9 · 6B C9 
C938 :2 9 7F 
C93A :20 D6 CA 
C93D : B9 6B C9 
C940 : 30 09 C91B 
C942: 10 Al CSE6 
C944: 
C944: C944 
C944 :AB 
C945: AD FB 04 
C948:CO ll 
C94A : DO OB C957 
C94C:20 40 CD 
C94F:A9 98 
C951 :80 7B 06 
C954: 4C CS CS 
C957: 
C957,CO 05 
C959: DO 08 C963 
C95B:29 DF 
C950:8D FB 04 
C960 : 4C E6 CS 
C963 : 
C963 :CO 04 
C965: DO F9 C960 
C967:09 20 
C969: DO F2 C95D 
C96B : 
C96B: 
C96B: 
C96B 
C96B 
C96B 
C96B 
C96B: C96B 
C96B:OC 
C96C : I C 

62 • 
63 • 
64 

The four arrow keys (as IJKH) 

MSB OFF 
65 
66 
67 

ESCAPING EQU * 

6~ 

69 
70 
71 
72 ESC2 
73 
74 
75 
76 
77 • 
78 ESC3 
79 
80 
81 
82 
83 
84 
85 • 

JSR ESCON 
JSR GETKEY 
JSR ESCOFF 
JSR · UPSHFT 
AND #$7F 
LOY I ESCNUM-1 
CMP 
SEQ 
DEY 

ESCTAB, Y 
ESC3 

BPL ESC2 
BMI ESCSPEC 

f,QU * 
LOA ESCCHAR, Y 
AND #$ 7F 
JSR CTLCHAR 
LDA ESCCHAR, Y 
BMI ESCAPING 
BPL B.INPUT 

86 ESCSPEC EQU * 
87 TAY 
8S 
89 
90 
91 
92 

. 93 
94 
95 • 

LDA 
CPY 
BNE 
JSR 
I.DA 
STA 
JMP 

tiODE 
#$11 
ESCSPI 
X.NAK 
~$98 
CHAR 
BIORET 

; ESCAPE CURSOR ON 
;GET ESCAPE FUNCrION 
; REPLACE ORIGINAL CHARACTER 
jupshift the char 
;DROP HI BIT 
;COUNT/INDF.X 
; IS IT A VALID ESCAPE ? 
;=>YES 

;TRY 'EM ALL • • • 
;=>MAYBE IT'S A SPECIAL ONE 

;GET CHAR TO "PRlNT" 
;DROP HI BIT (FLAG) 
; EXECUTE . IT 
;GET FLAG 
;•)STAY IN ESCAPE MODE 
; • >QUIT ESCAPE MODE 

;put char here 
;so we c an put this here 
;was it Quit7 
;•)no 
;do the quitting stuff 

- ;11ake it look 1 ike 
;CTL-X was pressed 
;•>qui t the card forever 

96 ESCSPl 
97 

CPY 
BNE 
AND 

1$05 ;wAs it CTL-E for enable 
ESCSP4 ;=)no 

9S 12S5-M.CTL2 ;yes, enable ctl chars 
99 ESCSP2 STA 

100 ESCSP3 JMP 
101 • 

MODE ;save new mode 
B. INPUT ; ""> exit escape mode 

102 ESCSP4 CPY #S04 
103 BlfE ESCSP3 
104 ORA UM . CTL2 
105 BNE ESCSP2 
106 • 

;was it CTL-0 for disable 
;- )no, exit escape mode 
;dis,11.ble. ctl chars 
;•) exit escape mode 

107 * This table contains the control characters which, 
108 * when executed, carry out the escape functions. If 
109 * the high bit of the character ls set , it means that 
110 * escape mode should not be exited after execution of 
111 * the character. 
112 * 
ll 3 ESCCHAR F,QU * 
114 • DFB $0C 
115 DFB $IC 

;@: FORMFEED 
;A: FS 



c..> C96D:08 116 DFB $08 ;B: BS C9A8 170 HSB OFF 
f\.) 
f\.) C96E:OA 117 DFB $0A ;C: LP C9A8 26 INCLUDB PASCAL 

C96P:1F 118 DFB $1F jO: US C9A8 l •••••••••••••••••••••••••••••••••••••••• 

C970: ID 11 9 DFB $ 1D ;E: GS C9A8 2 • PASCAL 1.0 OUTPUT HOOK: 

C971 : OB 120 OFB $08 ;P: VT C9A8 . 3 **************************ill'••••········· 
C972 : 9F 121 DFB $1 P+$80 ;I: US (STAY ESC) C9A8 0002 4 DS C80RG+$1AA-* ,O 

C973 :88 122 DFB $08+$80 ;J: BS (STAY ESC) C9M 0000 5 IFNE *-CSORG-$1 M 

C974 :9C 123 DFB $1C+$80 ;K: PS (STAY ESC) s 6 FAIL 2, 'C9AA HOOK ALIGNMENT' 

C975 :8A 124 DPB $0A+$80 ;H: LF (STAY ESC) C9AA: 7 PIN 

C976 : 11 125 DFB $11 ;4 :DCl C9AA :AD 7B 06 8 LDA CHAR ;GET OUTPUT CHARACTER 

C977: 12 126 DFB $12 ;8 :DC2 C9AD:4C 56 C3 9 JHP JPllRITE ;•)USE STANDARD WRITE 

C978 : 88 127 DFB $08+$80 ; <-:BS (STAY ESC) C9BO: 10 •••••••••••••••••••••••••••••••••••••••• 

C979 :SA 128 DFB $0A+$80 ;DN:LF (STAY ESC) C9BO: 11 • 

C97A:9F 129 DFB $1F+$80 ; UP:US (STAY ESC) C9BO: 12 ······························••1t••····· 
C97B: 9C 130 DFB $1C+$80 ;->:FS (STAY ESC) C9BO: 13 • PASCAL INITIALIZATION: 

C97C : 131 • C9BO: 14 * Disable printing of mouse text 

C97C: 132 HSB OFF ;high bit already masked C9BO: 1 s •••••••••••••••••••••••••••••••••••••••• 
C97C : C97C 133 ESCTAB EQU . C9BO: C9BO 16 PINITl . O EOU * 

c97c:40 134 ASC ' @' C9BO:A9 83 17 LDA IH . PASCAL+H . PAS! . o+H. HOUSE 

C97D : 41 135 ASC 'A' ; HANDLE OLD ESCAPES C9B2:DO 02 C9B6 18 BNE PINIT2 :•>always 

C97E :42 136 ASC 'B' C9B4: C9B4 19 PINIT EQU . 
C97P:43 137 ASC 'C' C9B4 :A9 81 20 LDA IH .PASCAL+H.MOUSE ;SAY WE ' RE 

C980 : 44 138 ASC 'D ' C9B6 : 21 • 

C981 :45 139 ASC 'E ' C9B6: C9B6 22 PINIT2 l!QU . 
C982 : 46 140 ASC 'F' C9B6 :48 23 PHA ;save version ID 

C983 :4 9 141 ASC 'I' C987: 24 • 

C984:4A 142 ASC 'J' C9B7 : 25 • SEE IF THE CARD'S PLUGGED IN: 

C985 :48 143 ASC ' K' C987 : 26 • 

C986:4D 144 ASC 'H' C9B7: 20 90 CA 27 JSR TESTCARD ; IS IT THERE? 

C987 :34 145 ASC ' 4' C9BA:FO 04 C9CO 28 SEQ PIGOOD ;•>YES 

C988: 38 146 ASC '8' C9BC :68 29 PLA ;discard ID byte 

C989:08 147 DFB $08 ;LEFT ARROW C9BD : A2 09 30 LOX #9 ; IORESULT•' NO DEVICE 1 

C98A:OA 148 DFB $DA ;DOWN ARROW C9BF :60 31 RTS 

C988:08 149 DFB $OB ;UP ARROW C9CO: 32 • 

C98C:l5 150 DFB $15 ;RITE ARROW C9CO: C9CO 33 PIGOOD EQU . 
C98D : 0011 15 1 ESCNUH EOU *-ESCTAB C9C0:68 34 PLA ;p:et version ID 

C98D: 152 MSR ON C9C1 :BD FB 04 35 STA MODE ; and save it 

C98D : 153 • C9C4:8D 01 CO 36 STA SET80COL ; ENABLE 80 STORE 

C98D: 154 * Tack on diap; 128K te st here C9C7 :BD OD CO 37 STA SET80VJD ; AND 80 VIDEO 

C98D : 155 * C9CA:8D OF CO 38 STA SETALTCtlAR ; NORM+ INV LC ASE 

C98D:2C 13 CO 156 STAUX BIT RDRAHRD ;aux done yet? C9CD: 20 D4 CE 39 JSR PSETUP ;set. window and cursor 

C990 : 30 ll C9A3 157 BHI KSTAUX ;•>ye~, exit C900 : 20 90 CC 40 JSR x.rr ; HOME & CLEAR IT 

C992 :A9 EE 158 LDA #$EE ;get test pattern C9D3 :4C IF CA 41 JHP DOBASL ; fix OLDBASL/H, display cursor, exit 

C994:8D 05 CO 159 STA WRCARDRAM : wr 1 te AUX RAM C9D6: 42 **************************************** 
C997 :BD 03 CO 160 STA RDCARDRAM i read AUX RAM C9D6: 43 * PASCAL lNPUT : 

C99A :8D 00 DC 161 STA $COO i test this byte C9D6: 44 • 

C99D:8D 00 08 162 STA $800 ;and· this is l'K. off C9D6: 45 *Character .dwRys returned with · htgh bi t cleu. 

C9AO:CD 00 DC 163 CHP $COO ;hu SCOO bee n updated? C9D6 : 46 • 

C9A3:60 l 64 XSTAUX RTS ;check in •ain dlag s . C906: 47~ ·········••11••·························· 
C9A4 : 165 • C9D6: C9D6 48 PREAD EOU . 
C9A4 : 166 * ESCOUT ul'!ed by ESCFIX in $Cl page C9D6 : 20 D4 CE 49 JSR PSETUP ;SETUP ZP STUFF 

C9A4 : 167 • C9D9: 20 38 CS 50 JSR GETKEY ;GET A KEYSTROKE 

C9A4 : 168 HSB ON C9DC :2 9 7F 51 AND l$7F ;DROP HI Bl't 

C9A4 :CA CB CD C9 169 ESCOUT ASC ' JKMI' ;The arrows C9DE:8D 78 06 52 STA CHAR ; SAVE THE CHAR 



~ 
U> 

C9E! :A2 00 
C9E3:AD FB 04 
C9E6:29 02 
C9EB :FO 02 C9EC 
C9EA:A2 C3 
C9EC: 
C9EC: C9EC 
C9EC:AD 78 06 
C9EF:60 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: C9FO 
C9F0:29 7F 
C9F2:AA 
C9F3:20 D4 CE 
C9F6:A9 08 
C9F8:2C FB 04 
C9F8: DO 32 CA2F 
C9FD:BA 
C9PE:2C 2E CA 
CAO!: FO SO CAS3 
CA03:AC 78 05 
CA06:24 32 
CA08: 10 02 CAOC 
CAOA:09 BO 
CAOC:20 70 CE 
CAOF:CB 
CAIO:BC 78 05 
CA13:C4 21 
CA15:90 08 CAIF 
CAl7:A9 00 
CA19 :8D 7B 05 
CAIC:20 DB CB 
CAIF:AS 2B 
CA21 :80 7B 07 
CA24:A5 29 
CA26: BO F8 07 
CA29:20 IF CE 
CA2C:A2 00 
CA2E:60 
CA2F: 
CA2F: 
CA2F: 
CA2 F: 20 l F CE 
CAJ2:8A 
CA33: 38 
CA34:E9 20 
CA36: 2C FB 06 
CA39:30 30 CA68 
CA3B: 

S3 LOX #0 ; IO RESULT•' GOOD' 
54 LOA HOOE ; ARE WE IN I , 0-HODE? 
55 AND #H,PASI ,0 
56 8EQ PREADRET2 ;•)NOPE 
57 LOX #(CNOO ;YES, RETURN CN IN X 
58 • 
S9 PREADRET2 EQU * 
60 LOA CHAR ; RESTORE CHAR 
61 RTS 
62 • 
63 * PASCAL OUTPUT: 
64 * Note: to be executed, control characters must have 
65 * their high bits cleared. All o ther characters 
66 * displayed regardless of their high bits. 
67 • 
6B PWRITE EQU * 
69 AND #$7F 
70 
71 
72 
73 
74 
7S 
76 
77 
78 
79 
80 
81 
82 PWRl 
83 
84 
85 
B6 
B7 

TAX 
JSR PSETUP 
LOA DM.GOXY 
BIT MODE 
8NE GETX 
TXA 
BIT PRTS 
BEQ PCTL 
LOY OURCH 
BIT INVFLG 
BPL PWRl 
ORA 6$80 
JSR STORIT 
!NY 
STY OURCH 
CPY WNDWDTH 
BCC D08ASL 
LOA HO 

88 STA OURCH 
89 JSR X.LF 
90 DOBASL LOA BASL 
9 l STA OLOBASL 
92 LDA BASH 
93 STA OLDBASH 
94 PWRITERET JSR PASl~V 
9S PRET LOX #$0 
9b PRTS RTS 
97 • 
9B * HANDLE GOTOXY STUFF' 
99 • 

100 GETX JSR PAS INV 
101 TXA 
102 SEC 
103 SBC #32 
l 04 BIT XCOORD 
!OS BMI PSF.TX 
106 • 

;clear high bits 
;save character 
;SETUP ZP STUFF, don 1 t set ROM 
;ARE WE DOING GOTOXY? 

; =>Doing X or Y? 
;now check for control char 
;is it control? 
;=)yes, do control 
;get horizontal position 
;check for inverse 
;inverse, go store it 

;now store it (erasing cursor) 
; INC CH 

;do carria,e;e return 

;and linefeed 
;save BASL for pascal 

;display new cursor 
;return with 

;turn off cuC"sor 
;get chAracter 

;MAKI'.: BINARY 
;doing X? 
;•)yes, !Jet it 

CA3B 
CA3B 
CA3B 80 FB 05 
CA3E 85 2S 
CA40 20 BA CA 
CA43 AD FB 06 
CA46 BO 78 OS 
CA49 A9 F7 
CA48 2D FB 04 
CA4E 80 FB 04 
CASI DO CC CAI F 
CAS3 
CA53 20 IF CE 
CA56 8A 
CA57 C9 IF. 
CAS9 FO 06 CA6 l 
CA5B 20 D6 CA 
CASE 4C IF CA 
CA61 
CA6l 
CA6! 
CA6l CA6l 
CA61 A9 08 
CA63 OD FB 04 
CA66 80 FB 04 
CA69 A9 FF 
CA6B 80 FB 06 
CA6E 4C 29 CA 
CA7l 
CA7l CA7 l 
CA71 AA 
CA72 AS 2A 
CA74 AO 03 
CA76 EO BA 
CA78 FO OB CA85 
CA7A 4A 
CA7B 90 08 
CA7D 4A 
CA7E 4A 
CA7F 09 20 
CAB! BB 
CA82 DO FA 
CA84 CB 
CA8S 88 
CA86 DO F2 
CA88 60 
CA89 
CA89 
CA89 
CA89 
CA89 
CA89 
CAB9 :20 87 
CABC:DO 02 

CABS 

CA7E 

CA7A 

CA89 
FB 

CA90 

107 * Set Y and do the GOTOXY 
108 * 
109 GETY 
110 
Ill 
l 12 
113 
114 
l 15 
116 
117 
l lB • 
119 PCTL 
120 
121 
122 
123 
124 
12S • 

STA OURCV 
STA CV 
JSR BASCALC 
LDA XCOORD 

;calc base addr 

STA DURCH ;set cursor horizontal 
tDA 1255-M.COXY ;turn off gotoxy 
AND MODE 
STA HOOE 
BNE DOBASL 

JSR PASINV 
TXA 
CMP 8$1E 
BEO STARTXY 
JSR CTLCHAR 
.IMP DOBASL 

;•)DONE (ALWAYS TAKEN) 

;turn off curirnr 
;get char 
;is 1.t gotoXY? 
;•)yes, star t it up 
: EXECUTE IT IF POSSIBLE 
;"")update BASL/H, cursor, 

126 * START THE GOTOXY SEQUENCE: 
127 • 
128 STARTXY EOIJ * 
129 
130 
131 
132 
133 PSETX 
134 

2 7 
I DOHN 
2 
3 
4 
5 
6 

LOA #H.GOXY 
ORA HOOE ;turn on gotoxy 
STA HOOE 
LOA #$FF ;se t XCOORD to -1 
STA XCOORD ;set X 
JMP PWRIH;RET ;•)display cursor and exit 
INCLUDE SUBS! 
EQU * 
TAX ;SAVE IT 
LOA BAS2L ;GET OPCODE AGAIN 
LOY #$03 
CPX #$BA 
BEQ HNNDX3 

7 HNNDXl LSR A 

exit 

8 BCC HNNDX3 ; FORM INDEX INTO MNEMONIC TABLE 
9 LSR A 

10 MNNDX2 LSR A 1) lXXXlOIO •) OO!OlXXX 
ll ORA #$20 2) XXXYYYOI =) 001 l!XXX 
12 DEY 3) XXXYYYlO •) OOl!OXXX 
13 BNE HNNDX2 4) XXXYYIOO •> OOIOOXXX 
14 INY 5) xxxxxooo -> oooxxxxx 
l S HNNDX3 DEY 
16 BNE HNNOXl 
17 RTS 
lB • 
19 • Switch· in slot 3, then test for a ROH ·card. 
20 * If none found, test for 80 column card, 
21 * else return with BNE. 
22 • 
23 TSTROMCRD EQU * 
24 JSR TSTROM ; test for ROM card 
25 BNE TESTCARD ;•>no ROH, check for 80 column card 



~ 
.t>. 

CA8E :C8 
CA8P:60 
CA90 : 
CA90 : 
CA90: 
CA90 : 
CA90 : 
CA90 : 
CA90 : 
CA90: 
CA90: 
CA90: 
CA90 : CA90 
CA90:AD IC CO 
CA93:0A 
CA94 :A9 88 
CA96 : 2C 18 CO 
CA99 : 8D 01 CO 
CA9C:08 
CA9D:8D 55 CO 
CAAO : AC 00 04 
CAA3 : 8D 00 04 
CAA6 : AD 00 04 
CAA9 : 8C 00 04 
CAAC:28 
CAAD : 80 03 CAB2 
CAAF:80 54 CO 
C.\82: CAB2 
CAB2 30 03 CAB7 
CAB4 8D 00 CO 
CAB7 CAB7 
CAB7 C9 88 
CAB9 60 
CABA 
CABA 

26 
27 
28 • 

INY 
RTS 

;11ake BNE for return 

29 •••••••••••••••••••••••••••••••••••••••• 

30 * NAME : l'F.STCARD 
31 * FUNCTION: StE IF 80COL CARD PLUGGED IN 
32 * !Nl'UT : NONE 
33 * OUTPUT : 'BEQ' IF CARD AVAILABLE 
34 * 'BNE' IF NOT 
35 * VOLATILE: AC, Y 

36 ·············-·························· 37 • 
38 TESTCARD EOU * 
39 LDA RDPAG£2 
40 ASL A 
41 LOA #$88 
42 BIT Rll80COL 
43 STA SET80COL 
44 PHP 
45 STA 
46 LDY 
47 STA 
48 LDA 
49 STY 
50 PLP 

TXTPAGE2 
$0400 
$0400 
$0400 
$0400 

51 BCS STAY2 
52 STA TXTPAGEI 
53 STAY2 EQU * 

;REMEMBER CURRENT VIDEO DISPLAY 
; IN TH.E CARRY 
: USEFUL CHAR FOR TESTING 
; REMEMBER VIDEO MOOR IN 'N' 
: ENABLE 80COL STORE 
jSAVE 'N' ANO 'C' FLAGS 
;SET PAGE2 
;GET FIRST CHAR 
;SET TO A '*' 
;GF.T IT BACK FROM RAM 
; RESTORE ORIG CttAR 
;RESTORE 'N' ANO 'C' FLAGS 
;STAY IN PAGE2 
; RESTORE PAGF.l 

54 BHI STAY80 : • >STAY IN 80COL MODE 
55 STA CLR80COL ;TURN OFF BOCOL smRE 
56 STAY80 EQU * 
57 CHP #$88 ;WAS CHAR VALID? 
58 RTS ; RETURN RESULT AS BEQ/BNE 
59 • 
60 * Do the 

norntBl moni tor ROM BASCALC 
CABA : 61 * 
CABA 
CABA 48 
CA8B 4A 
CABC 29 03 
CABE 09 04 
CACO 85 29 
CAC2 68 
CAC3 29 ·18 
CAC5 90 02 
CAC7 : 69 7F 
CAC9:85 28 
CACB : OA 
CACC:OA 
CACD:05 28 
CACF:85 28 
CAD! : 60 
CAD2 

CABA 62 BASCALC EQU * 
63 PHA 
64 LSR A 
65 AND #$03 
66 ORA #$04 
67 STA BASH 
68 Pl.A 
69 AND 

CAC9 70 BCC 
71 ADC 
72 BSCLC2 STA 
73 ASL 

#$18 
8SCLC2 
#$7F 
BASL 
A 

74 
75 
76 
77 
78 • 

ASL A 
ORA BASL 
STA BASL 
RTS 

CAD2 : 
CAD2: 
CAD2 
CAD2 
CAD2 
CAD2 
CAD2 
CAD2 
CAD2 
CAD2 
CAD2 2C 06 
CADS 50 FE 
CAD6 
CAD6 
CAD6 
CAD6 
CAD6 
CAD6 
CAD6 
CAD6 
CAD6 
CA06 
CAD6 
CAD6 
CAD6 B8 

CB 
CA05 
CAD6 

CAD7 80 78 07 
CADA 48 
CADB 98 
CADC 48 
CADD 
CADD AC 7B 07 
CAEO CO 05 
CAE2 90 13 CAF7 
CAE4 89 84 CB 
CAE7 FO OE CAF7 
CAE9 50 12 CAFD 
CAEB: 
CAEB : 0000 

CAEB : 
CAEB : 30 10 CAFD 
CAED : 
CAED 
CAED 80 78 07 
CAFO AD FB 04 
CAF3 29 28 
CAF5 FD 03 CAFA 
CAF7 
CAF7 CAF7 
CAF7 :38 
CAF8:80 09 C803 
CAPA: 
CAFA:AO 78 07 
CAFO: CAFD 

79 **********************••···-······•***** 
80 * NAME CTI.CHARO 
81 * FUNCTION: Execute CTL char if M.CTl,•0 
8 2 * INPUT : AC•CHAR 
83 * OUTPUT : 'BCS 1 if not exe cuted 
84 * 1 BCC' if executed 
8'> • VOLATILE: NOTHING 
86 * CALLS MANY THINGS 

87 ·································••111•••• 
88 • 
89 CTLCHARO BIT SEVI 
90 BVC * 
91 ORG *-I 
92 • 

;set V (use M..C'fL) 
; s kip CLC 

93 **************************************** 
94 * NAME CTI.CHAR 
95 * FUNCTION: Always execute CTL ch1u 
96 * INPUT AC• CHAR 
97 * OUTPUT : 'BCS' if not executed 
98 * 'BCC' if ct.l executed 
99 * VOLATI LP. : NOTHING 

100 * CALLS MANY THINGS 

101 **************************************** 
102 • 
103 CTLCHAR CLV 
104 STA TEMPI 
105 PHA 
106 TYA 
107 PHA 
108 • 

clear V (ignore H.CTL) 
TEMP SAVE OF CHAR 
SAVE AC 
SAVE Y 

109 
110 
111 
112 
113 
114 
115 • 
116 
117 
118 
119 
120 
12 1 • 
122 
123 
124 
125 
126 • 

LOY 
CPY 
BCC 

TEMPI ;GET CHAR IN QUESTION 
#$05 ; IS IT NUL •• EOT? 
CTLCHARX ;•) YES , NOT USED 

LOA 
BEQ 
BVC 

CTLADH-5, Y jGet high byte of addres s 
CTLCHARX ;=>ctl not implemented 
CTLGOO ;=> CLTCHAR: always execute 

DO TEST 
BPL CTI.GOO 
ELSE 
BMI CTLGOO 
FIN 

;•)CR,BEL,LF,BS always done 

;•>CR,BEL,LF,BS always done 

STA TEHPl ;save h i gh byte o f address 
LOA MODE ; 1 f c ontrol chars 
AND llM.CTL+M.CTL2 ;are enabled 
BEO CTLGO ;•>then go do the11 

127 CTLCHARX EQU * 
128 SEC 
129 BCS CTLRET 
130 • 
131 CTI.GO LDA TEMPI 
132 CTI.GOO EQU * 

;SAY 'NOT CTL' 
; - >DONE 

;get address ba ck 



c..> 

"" (11 

CAFD: 0000 

CAFD: 
CAFD:09 80 
CAFF: 
CAFF:20 07 CB 
CB02: 
CB02: 18 
C803: CB03 
C803 :68 
CB04 :AB 
C805:68 
C806:60 
Cll07 : 
CB07: CB07 
CB07 :48 
CB08: B9 99 CB 
C808:48 
CBOC:60 
CBOD : 
C80D: 
C80D: 
Cl!OD : AD PB 04 
CBIO:lO 05 CB17 
CB12 :Z9 EF 
CB14 : 8D FB 04 
CB17:60 
CBl8: 
CBl8: 
CBl8: 
CBl8: 
CB18:AD FB 04 
CBIB: 10 FA CBI 7 
CB1D:09 10 
CBIP:OO F3 CB14 
CB21: 
CB21: 
CBZl: 
C821: CB21 
C821 :A9 40 
CB23:20 34 CB 
CBZ6:AO CO 
CB28 : A9 OC 
CBZA:20 34 CB 
CB2D : AD 30 CO 
C630 :88 
C831 : DO FS CB28 
CB33 : 60 
C834: 
C834: CB34 
CB34:38 
CB35 :48 
CB36 : E9 01 
CB38: 00 re· CB36 

133 
134 
13S 
136 
137 
138 
139 • 
140 
141 CTLRET 
14Z 
143 
144 
145 SEVl 
146 • 

DO TEST 
AND #$JF 
ELSE 
ORA #$80 
FIN 
JSR CTLXFER 

CLC 
EQU * 
PLA 
TAY 
PLA 
RTS 

147 CTLXFER EQU * 

;for teat• hi bit clear 

;hi bit always set 

; EXECUTE SUBROUTINE 

;SAY 'CTL CHAR EXECUTED' 

RESTORE 
y 

AND AC 

148 PKA ;PUSH ONTO STACK FOR 
149 LD.\ CTLADL-5, Y ; TRANSFER TRICK 
lSO PKA 
lSl RTS ;XFER TO ROUTINE 
152 • 
153 * Turn cursor on for Pascal only 
1S4 • 
155 X.CUR.ON LDA MODE ;get 11ode byte 
156 BPL CUllON.X ;•>not pascal, don't do it 
1S7 AND #255-M.CURSOR ;clear cursor bit 
1S8 SAVCUR STA MODE ; save lt 
159 CURON.X RTS ;and exit 
160 • 
161 * Turn cursor off for Pascal only. 
162 * Cursor is not displayed during ~all. 
163 * 
164 X.CUR.OFF LOA MODE get 11.ode byte 
165 BPL CURON.X •)not pascAl, don't do lt 
166 ORA #M.CURSOR turn on cursor bit 
167 BNE SAVCUR save and exit 
168 • 
169 * EXECtrrE BELL: 
170 • 
171 X.BELL 
172 
173 
174 
175 
176 
177 
178 
179 
180 

BELLZ 

181 * 
182 WAIT 
183 
184 WAITZ 
185 WAIT3 
186 

EQU * 
LOA #$40 
JSR WAIT 
LDY #$CO 
LDA #SOC 
JSR WAIT 
LDA SPKR 
DEY 
BNE BELL2 
RTS 

EQU • 
SEC 
PHA 
SBC #I 
BNE WAIT3 

; RIP PED OFF FROM MONITOR 

; RIPPED OFF FROM MONITOR ROH 

CB3A:68 
CB3B:E9 01 
CB3D:DO F6 CB35 
CB3F:60 
CB40: 
CB40: 
CB40: 
CB40: CB40 
CB40:CE 7B OS 
CB43: 10 OB CBSO 
CB45 : AS 21 
CB47 :SD 78 05 
CB4A:CE 7B 05 
CB4D : Z0 79 CB 
C850: CB50 
CB50:60 
CBS! : 
CBS!: 
CBS!: 
C851: CB51 
CBS! :A9 00 
CB53 :8D 7B 05 
CBS6: AD FB 04 
CB59: 30 03 CBSE 
CB5B : 20 D8 CB 
CB5E: CBSE 
CBSE:60 
CBSF: 
CB5P: 
CBSF : 
CBSF: CBSF 
CBSF : AS 22 
CB61 :85 ZS 
CB63 :A9 00 
CB65 : 8D 7B 05 
CB68: 4C FE CD 
CB6B: 
CB6B 
CB68 
CB6B : CB6B 
C86B:EE 78 05 
CB6E:AD 7B 05 
CB71 :CS 21 
CB73 : 90 03 CB78 
CB75:ZO 51 CB 
C878 : 
CB78 : CB78 
CB78 : 60 
CB79 
CB79 
CB79 
CB79 : A5 22 
CB7B:C5 25 
CB70:80 IE CB9D 

187 
188 
189 
190 
191 • 

PLA 
SBC II 
BNE WAITZ 
RTS 

192 * EXECUTE BACKSPACE: 
193 * 
194 X,BS 
195 
196 
197 
198 

EQU * 
DEC OURCH 
BPL BSDONE 
LDA WNDWDTH 
STA OURCH 

199 
200 

DEC OURCH 
JSR X.US 

BSDONE EQU * 201 
202 
203 • 

RTS 

BACK UP CH 
•)DONE 
BACK UP TO PRIOR LINE 
SET CH 

; NOW DO REV LINEFEED 

204 * EXECUTE CARRIAGF. RETURN: 
Z05 * 
Z06 x.cR 
207 
208 
209 
ZIO 
211 

EQU * 
LDA #0 
STA DURCH 
LDA MODE 
BM! X.CRRET 
JSR X.LF 

212 X.CRl\ET EOU * 
213 RTS 
214 * 
Z l S * EXECUTE HOME: 
Zl6 • 
217 X.EM 
Zl8 
219 
220 
221 
222 
Z23 • 

EQU * 
LDA WNDTOP 
STA CV 
LDA #0 
STA DURCH 
JHP VTAB 

BACK UP CH TO 
BEGINNING OF LINE 

ARE WE IN BASIC? 
•) Pascal, avoid auto LF 
EXECUTE AUTO LF FOR BASIC 

;STUFF CH 
;set base for OURCV 

2Z4 * EXECUTE FORWARD SPACE : 

225 * 
2Z6 X.FS 
Z27 
Z28 
229 
Z30 
Z31 
232 • 

EQU * 
INC DURCH 
LDA 
CHP 

OURCH 
WNDWDTH 

BCC X.FSRET 
JSR x.cR 

Z33 X. FSRET EQU * 
Z34 RTS 
235 • 

;BUMP CH 
;GET THE POSITION 
;OFF THE RIGHT SIDE ? 
;•) NO, GOOD 
;•)YES, WRAP AROUND 

Z36 * EXECUTE REVERSE LINEFEED : 
Z37 • 
238 x.ns 
Z39 
Z40 

LOA WNDTOP 
CHP CV 
BCS X. USRET 

;are we at top? 

;•>ves, stay there 



U> CB7F:C6 25 241 DEC CV ;else go up a line CBBA:48 295 DFB #(X . CUR.OFF-$8001 ;ACK 

"' CB81 :4C FE CD 242 .!HP VTAB jexi.t thru VTAB (update OURCV) CBBB:CB 296 DFB #(X.BELL-1 ;BEL 
0- CB84: 243 • CBBC : CB 297 OFB l<x. BS- l ;BS 

CB84 : 244 * EXF.cUTE "NORMAL VIDEO" CBBO:OO 298 DFB 0 ;HT 
CB84 : 245 • CBBE:CB 299 DFB l< x. LF-l ;LF 
CB84 : CB84 246 x.so EQU . CBBF: 4C 30 0 OFB #(X.VT-$8001 ;VT 
CB84:AD PB 04 247 LOA MODE ;SET HOOE BIT CBCO: 4C 301 OFB f( X. FF-$800 l ;FF 
CB87 : 10 02 CB8B 248 BPL X.SOl ;don't set mode for BASIC CBC! :CB 302 DFB #<X . CR-l ;CR 
CB89 : 29 FB 249 AND 1255-H. VHODE i SET I NORMAL I CBC2 :48 303 OFB t<X. S0-$800 l ; SO 
CB8B : AO FF 250 X.$01 LOY #2 55 CBC3:4B 304 DFB #(X.S l-$8001 ;SI 
CB80:00 09 CB98 251 BNE STUFFINV ; (ALWAYS) C BC4 :00 305 DF8 0 ; DLE 
CB8F : 252 * CBC5 :4C 306 OFB #(X.DCl-$800 l ;DC ! 
CB8F: 253 * EXECUTE 11 1NVERSE VIDEO" CBC6 : 4C 307 DFB #(X.DC2-$8001 ;OC2 
CB8F: 254 • CBC) :00 308 DFB 0 ;DC3 
CB8F: CB8F 255 x .sr EQU * CBC8 :00 309 OFB 0 ;DC4 
CB8F:AD FB 04 256 LOA MODE ; SET HOOE BIT CBC9 :40 310 DFB #(X. NAK-$8001 ; NAK 
C892 : l0 02 CB96 257 BPL X.S!l ;rlon' t set mode for BASIC CBC A:48 3l l DFB #(SCROLLON-$8001 ;SYN 
CB94 :09 04 258 ORA #H.VHOOE i SET I INVERSE I C8C8 :4 B 312 OFB #( SCROLLUP- $8001 ; ETB 
CB96 : AO 7F 259 X.S!l LDY # 127 CBCC :40 313 DFB #(HOUSEOFF-$8001 
C898: 80 PB 04 260 STUFFINV STA HOOE ;SET HOOE CBC0:4B 314 OFB #(X. EH-$8001 ;EH 
CB9B :84 32 261 STY I NVF LG ; STUFF FLAG TOO CBCE:4C 3l5 OFB #<X . SU8- $8001 ;SUB 
CB90:60 262 X. US RET RTS CBC F :4 D 316 OFB #< HOUSEON-$8001 
C89E: 263 • CBD0:4B 317 DFB #(X. FS-$8001 ; rs 
CB9E: CB9E 264 CTLADL EQU . CBOI :4C 3l8 DFB #(X.GS-$800l ;GS 
CB9E:OC 265 DFB #)X . CUR.ON-1 ; ENO CBD2 :00 319 DFB 0 ;RS 
CB9F: 17 266 DFB #)X .CUR. OFF-1 ;ACK CBD3 :4 8 320 OFB l<x. US-$8001 ; US 
CBA0:20 267 OFB #)X. BELL- l ; BEL CBD4 : 28 INC LUDE SUBS2 
CBAl :3F 268 OFB #)X.BS-1 ;BS CBD4: 1 * 
CBA2:00 269 OFB 0 ;HT CBD4: 2 * SCROLLIT scrolls the Rcreen e ithe r up o r dovn, dependin,ll 
CBA3:07 270 DFB #)X.LF-l ;LP CBD4: 3 * on the value of x . It scrolls within windows with even 
CBA4:73 271 DFB #)X.VT-1 ;VT C BD4 : 4 * or odd edges for both 40 and 80 co lumns . lt can scroll 
CBAS :SF 272 DFB #>X.FF-1 ;FF CBD4: 5 * windows down t o 1 c harac ters wide . 
CBA6: 50 273 DFB #)X. CR-1 ;C R CBD4 : 6 * 
CBA7 :83 274 OFB l>x . so-1 ; so C8D4:AO 00 7 SCROLLDN LOY 10 ;direction • down 
CBA8 : 8E 275 DFB l)X. Sl-1 ;Sl CBD6:FO 15 CBED 8 BEQ SCROLL IT ;->go do scroll 
CBA9:00 276 DFB 0 ; DLF. CBD8 : 9 • 
CBM:E9 277 OFB #)X . DCl -l ;Del C808 : 10 * EXECUTE LINEFEED : 
CBAB:FB 278 DFB #)X. DC2-l ; DC2 CBU8: 11 • 
CBAC:OO 279 DFB 0 ;DC3 CB08: CB08 12 X. LF EQU . 
CBAD :OO 280 DFB 0 ; DC4 CBD8 : E6 25 13 INC CV 
CBAE:4C 281 DFB #)X .NAK-1 ; NAK CBDA : A5 25 14 LDA CV j SEE IF OFF BOTTOM 
CBAF :03 282 DFB #)SCROLLDN-1 ;SYN CBDC :8n FB 05 15 STA OURCV 
CBBO:EA 28 3 OFB f)SCROLLUP-l jETR CBDF:C5 23 l6 CHP WNDBTH ; OFF THE END? 
CBBl :3C 284 OFB l>HOUSEOFF-l CB El: BO 0 3 CBE6 17 BCS X.LF2 j•)yes, scroll screen 
C8B2 :SE 285 DFB #)X. EH-1 ;EH CBE3 :4C 03 CE 18 .!HP VTABZ ;exit thru VTABZ 
CBB3:95 286 DFB #>X. SUB-l ;SUB CBE6: 19 * 
CB84 : 43 287 DFB l)HOUS EON-l CB E6 : CBE6 20 X. LF2 EOU * 
C885 : 6A 288 DFB # >x.FS-1 ;FS CBE6 :CE FB 05 2 1 OEC OURCV ;back up to bottom 
CB B6 : 99 289 DFB #)X . GS-1 ;GS CBE9:C6 25 22 DEC CV ; and fall into scroll 
CBB7 :00 290 DFB 0 ;RS CBEB : 23 • 
CBB8:78 291 OFB #) X.US- l ;US C8E8:A0 01 24 SCROLLUP LOY I l ;direction • up 
CBB9: 292 • CBED : 8A 25 SCROLL I T TXA jsave X 
CB89: CBB9 293 CTLADH EQU * C8EE : 48 2 6 PHA 
CBB9:4 B 2 94 OFB #(X. CUR . ON-$8001 ;ENO CBEF:8C 7B 07 27 STY TEHPl ;save direction 



~ 
....... 

CBF2 :AS 21 
CBF4 :48 
CBFS:2C IF CO 
CBF8:10 IC CC16 
CBFA:8D 01 CO 
CBFD:4A 
CBFE:AA 
CBfF:AS 20 
CCOl ;4A 
CC02: 88 
CC03: 90 03 CC08 
CC05: 2C 06 CB 
CC08: 2A 
CC09:45 21 
CCOB:4A 
ccoc: 70 03 cell 
CCOE:BO 01 CCll 
CClO:CA 
CCI 1 :86 21 
CC13:AO IF CO 
CCl6:08 
CCl7:A6 22 
CC19:98 
CClA:DO 03 CCIF 
CCIC:A6 23 
CCIE:CA 
CClf: 
CCI F:8A 
CC20:20 03 CE 
CC23: 
CC23: AS 28 
CC2S:85 2A 
CC27:A5 29 
CC29: 85 2B 
CC2B: 
CC28:AD 78 07 
CC2E: FO 32 CC62 
CCJO: E8 
CCJI: E4 23 
CC33: BO 32 CC67 
CC35:8A 
CC36: 20 03 CE 
CC39:A4 21 
CC3B:28 
CC3C:08 
CCJD: 10 IE CCSD 
CC3F: AO 5S CO 
CC42: 98 
CC43: FO 07 CC4C 
CC45: Bl 28 
CC47:91 2A 
CC49:88 
CC4A: DO F9 CC45 
CC4C: 70 04 CCS2 

2 8 LDA WNDWDTH 
29 PHA 
30 BIT RD80VID 
31 BPL GETSTl 
32 STA SET80COL 
33 LSR A 
34 TAX 
35 LDA WNOLFT 
36 LSR A 
37 CLV 
38 BCC CHKRT 
39 BIT SEVI 
40 CHKRT 
41 
42 
43 
44 
4S 
46 GETST 
47 

ROL A 
EOR WNDWDTH 
LSR A 
BVS GETST 
BCS GETST 
DEX 
STX WNDWDTH 
LDA R080V!D 

48 GETSTI PHP 
49 
50 
51 
S2 
53 
S4 * 

LOX WNDTOP 
TYA 
BNE SETDBAS 
LDX WNDBTM 
DEX 

SS SE'rDBAS TXA 
S6 JSR VTABZ 
57 • 
S8 SCRL IN LDA BASL 
S9 STA BAS2L 
60 LOA BASH 
61 STA BAS2H 

62 * 
63 
64 
6S 
66 
67 
68 SETSRC 
69 
70 
71 
72 
73 
74 
7S 
76 

LOA 
BEQ 
INX 
CPX 
BCS 
TXA 
JSR 
LOY 
PLP 
PHP 

TF.MPI 

SCRLDN 

WNDBTM 
SCRLL3 

VTABZ 
WNDWDTH 

BPL SKPRT 
LDA TXTPAGE2 
TYA 
BEQ SCRLFT 

77 SCRLEVEN LDA (BASL), Y 
78 STA (BAS2L),Y 
79 
80 
81 

DEY 
BNE 

SCRLFT BVS 
SCRLEVEN 
SKPLFT 

;get width of scre~n window 
;save original width 
;in 40 or 80 columns? 
;•>40, determine starting line 
;make sure thls is enabled 
;divide by 2 for 80 column index 
;and save 
; test oddity of rh:ht edge 
;by rotatiniz low bit Ln.to carc-y 
;V•O if left edge even 
;•)check right edge · 
;V•l if left edge odd 
;restore WNDLFT 
;get oddity of right edge 
;C•l if rip:ht edge even 
;t.f odd left, don't DEY 
ii f even Tip; ht, don 1 t DEY 
; tf right edge odd, need one less 
;save window width 
; N•l 1 f 80 columns 
;save N,Z,V 
;assu11le scroll fro111 top 
;up or down? 
;•)up 
:down, start scrollinir; at bottom 
; really need one less 

;get current line 
;calculate base with window width 

;current line is destination 

;test direction 
; •)do the downer 
;do next line 
;done yet? 
;•)yup, all done 
;set new line 
jfi!:et base for new current line 
;get width for scroll 
;get status for scroll 
;N•l if 80 columns 
;•>only do 40 columns 
;scroll aux page first (even bytes) 
;test Y 
; if Y-0, only scroll one byte 

;do all but last even byte 
;odd left edge, skip thh byte 

CC4E Bl 28 
CCSO 91 2A 
CC52 AD 54 CO 
CCSS A4 21 
CC57 BO 04 CC5D 
CCS9 Bl 28 
CCSB 91 2A 
CCSD 88 
CCSE 10 F9 CCS9 
CC60 30 Cl CC21 
CC62 
CC62 CA 
CC63 E4 22 
CC65 10 CE CC35 
CC67 
CC67 28 
CC68 68 
CC69 85 21 
CC6B 20 96 CC 
CC6E 20 FE CD 
CC7 l 68 
CC72 AA 
CC73 60 
CC74 
CC74 
CC74 
CC74 :20 9A CC 
CC77:A5 25 
CC79:48 
CC7A:IO 06 CC82 
CC7C:20 03 CE 
CC7F:20 96 CC 
CCB2:E6 2S 
CC84 :AS 25 
CC86 :CS 23 
CC88: 90 F2 CC7C 
CC8A:68 
CC8B:85 2S 
CC8D:4C PE CD 
CC90 
CC90 
CC90 
CC90: CC90 
CC90: 20 SF CH 
CC93 :4c 74 CC 
CC96: 
CC96: 
CC96: 
CC96:AO 00 
CC98: FO 03 CC9D 
CC9A: 
CC9A: 
CC9A: 
CC9A:AC 7B OS 

82 LDA 
83 STA 
84 SKPLFT LOA 
8S LDY 
86 BCS 
87 SCRLODD LOA 
88 STA 
89 SXPRT DEY 

(BASL),Y 
(BAS2L), Y 
TXTPAGEI 
WNDWDTH 
SKPRT 
(BASL), Y 
(BAS2L),Y 

90 BPL SCRL(IDO 
91 BHl SCRLIN 
92 • 
93 SCRLDN DEX 
94 CPX WNDTOP 
9S BPL SETSRC 
96 • 
9 7 SCRLL3 PL P 
98 PLA 
99 

100 
101 
102 
103 
104 
105 • 

STA WNDWDTH 
JSR x.suB 
JSR VTAB 
PLA 
TAX 
RTS 

106 * EXECUTE CLR TO EOS: 
107 • 
108 x.vT JSR x.cs 
109 LDA CV 
110 PHA 
Ill .BPL X.VTNEXT 
112 X.VTLOOP JSR VTABZ 
113 JSR X.SUB 
114 X. VTNEXT INC CV 
llS LDA CV 
116 CMP WNDBTH 
117 BCC X.VTLOOP 
118 PLA 
119 STA CV 
120 JMP VTAB 
121 • 
122 * EXECUTE CLEAR: 
123 • 
124 X.FF 
125 
126 
127 • 

EQU * 
JSR X.EH 
JMP X. VT 

128 * EXECUTE CLEAR LINE 
129 • 
130 x.suB LDY #O 
131 BEO X.GSEOLZ 
132 • 
133 * EXECUTE CLEAR TO EOL: 
134 • 
135 X.GS LOY OURCH 

;now do main paize (odd bytes) 
;-restore width 
;even right erl.ge, skip this byte 

;•> always scroll next line 

do next l Lne 
done yet 
•)nope, not yet 

;pull status off Rtack 
; restore window width 

c:lear current line 
restore original cursor line 
and X 

;done!!! 

;CLEAR TO EOL 
; SAVE CV 

DO NEXT LINE (ALWAYS TAKEN) 
set base address 
CLEAR LINE 

OFF SCREEN? 
•)NO, KEEP GOING 
RESTORE 

CV 
return via VTAB (blech) 

; HOME THE CURSOR 
;RETURN VIA CLREOS (UGH!) 

;start at left 
;and c:lear to end of line 

;get CH 



(..> CC9D:A5 32 136 X.GSEOLZ LOA INVFLC ;mask blank CCEA: l 90 * EXECUTE 1 40COL MODE' : 
N CC9F:29 80 137 AND 1$80 ;with high bit of invfl~ .CCEA : 191 • 
<» CCAI :09 20 138 ORA 1$20 ;make it a blank CCEA: CCEA 192 X.DCl EQU . 

CCA3:2C lF CO 139 BIT RD80Vl0 ;ls 1t 80 colu11ns? CCEA : AD FB 04 193 LOA MODE ;don '-t convert if Pascal 
CCA6 :30 15 CCBD 140 BHI CLR80 ;•>yes do quick clear CCED:30 4D 

·ccA8:91 28 141 CLR40 STA (BASL) 0 Y CD3C 194 BHI X . DCIRTS ;•>it's Pascal 
CCAA:C8 142 INY CCEF:20 31 CD 195 X.DCIA JSR SETTOP ;set top of window (O or 20) 
CCAB:C4 21 143 CPY WNOWOTH CCF2 : 2C lF CO 196 BIT RD80Vl0 ;are we in 80 cOluttns? 
CCAD:90 F9 CCA8 144 BCC CLR40 CCF5:10 12 CD09 197 BPL X.DCIB ;•>no, no convert needed 
CCAF:60 145 RTS CCF7:20 91 CD 198 JSR SCRN84 ;else convert 80 to 40 
CCBO: 146 • CCFA:90 OD C009 199 BCC X. OCIB ;•>always set new window 
CCBO : 147 * Clear rii;r;ht half of screen for 40 to 80 CCFC : 200 • 
CCBO: 148 * screen conversion CCFC: 201 * Set 80 column aode 
CCBO: 149 * CCFC: 202 • 
CCB0:86 2A 150 CLRllALF STX BAS2L ;save X CCFC: CC FC 203 X.DC2 EQU . 
CCB2 :A2 08 151 LOX 1$08 jset horizontal counter CCFC:20 90 CA 204 JSR TESTCARD ; is there an 80 coluan card? 
CCB4 : AO 14 152 LDY #20 CCFF:DO 38 C03C 205 8NE X . OCIRTS ;•>no, can't do this 
CCB6 :A5 32 153 LOA INVFLG ;set (inverse) blank COOi :2C IF CO 206 BIT R080VID ;aC'e we in 40 colurans? 
CCB8:29 AO 154 ANO #$ AO C004:30 03 C009 207 BHI X.DCIB ;=>no, no convert needed 
CCBA:4C D5 CC 155 dMP CLR2 C006: 20 C4 CD 208 JSR SCRN48 ;else convert 40 to 80 
CCBD: 156 • C009: 209 • 
CCBD: 157 * Clear to end of li ne for 80 columns C009: AD 7B 05 210 X . DC I B LDA OURCH ;get cursor 
CCBO: 158 • COOC: 18 211 CLC ;since new window left • 0 
CCBD:86 2A 159 CLR80 . STX BAS2L ; SRVe X CDOO: 65 20 212 ADC WNOLFT ; NEWCH•OLDCH+OLDWNDLFT 
CCBF:48 160 PHA ;and blank CDOF:2C IF CO 213 . BIT RD80VIO ;in 80 columns? 
ceca ,99 161 TYA ;get count for CH C012:30 06 CO l A 214 BHI X.DCIC ;•>yes , CH is ok 
CCCI : 48 162 PHA ;save ·for left . edge check CDl4 :C9 28 215 CHP #40 ;else if CH is too big. 
CCC2 :38 163 SEC ;count•WNDWDTH-Y-1 CD16:90 02 CO I A 216 BCC x . oc1c ;set it to 39 
CCC3:E5 21 164 SBC WNDWDTH CDl8:A9 27 217 LDA 139 
CCC5:AA 165 TAX ;save CH counter CDIA:8D 7B 05 218 X.DCIC STA OURCH ; save new· CH 
CCC6: 98 166 TYA ;div CH by 2 for half pages COID:8S 24 219 STA CH 
CCC7 ,4A 167 LSR A COIF: AS 25 220 LOA CV ;base 
CCC8:A8 168 TAY CD21 : 20 BA CA 221 JSR 8ASCALC 
CCC9 :68 169 PLA ;restore ori.e;inal ch CD24 :2C IF CO 222 BIT R080VIO ; in 80 colu11ns? 
CCCA:45 20 170 EOR WNDLFT ;get starting page CD27: 10 05 CD2E 223 BPL 0040 ;•>no, set forty colu•n window 
ccr.c :6A 171 ROR A C029: 224 • 
ccco: BO 03 CC02 172 BCS CLRO CD29:20 71 CO 225 0080 JSR ~·uLL80 ;set 80 column window 
CCCF 10 01 CCD2 173 BPL CLRO CD2C:FO 03 CD31 226 SEQ SETTOP ;->always branch 
.CCDI C8 174 INY ;if f WNOLFT odd, starting byte odd CD2E: 227 * 
CCD2 68 175 CLRO PLA ;get blank CD2E: 20 60 CD 228 0040 JSR FULL40 ;set 40 column window 

. CCD3 BO OB CCEO 176 BCS CLRl ~~:;t!:gp:;:e 
2 
is l (default) CD31 : A9 00 229 SETTOP LOA #0 ;assume normal window 

CCD5 2C 55 CO 177 CLR2 BIT TXTPAGE2 CD33: 2C lA CO 230 BIT ROT EXT ;text or mixed? 
CC08 91 28 178 STA ( BASL), Y CD36:30 02 CD3A 231 BHI 0040A ;•>text, all ok 
CCDA 2C 54 CO 179 BIT TXTPAGEI ;now do page l CD38:A9 14 232 LOA #20 
CCDO E8 180 INX CD3A:85 22 233 D040A STA WNDTOP ;set new top 
CCDE FO 06 CCE6 181 BEQ CLR3 ;all done CD3C:60 234 X.DClRTS RTS 
CCEO 91 28 I 82 CLRI STA (BASL),Y CD30: 235 * 
CCE2 ca 183 INY ;forward 2 columns CD3D: 2 36 * EXECUTE HOUSE TF.XT OFF 
CCE3 E8 184 INX ;next ch CD3D: 237 • 
CCE4 00 EF CCD5 185 BNE CLR2 ;not done yet C03D: AD FR 0 4 238 HOUSEOFF LOA MODE 
CCE6 A6 2A 186 CLR3 LOX BAS2L ; restore X CD40:09 01 239 ORA IM.HOUSE ;set mouse bit 
CCE8 38 187 SEC ;good exit condition CD42 :DO OS CD49 240 8NE SHOUSE ;to disable mouse c hars 
CCE9 60 188 RTS ;and return CD44: 241 • 
CCEA 189 • CD44: 242 * EXECUTE HOUSE TEXT ON 



CD44: 243 • CD7F:60 297 RTS 

CD44 :AD FB 04 244 HOUSEON LDA MODE COBO: 298 • 

CD4 7 :29 FE 245 AND #255-M . MOUSE ;clear mouse bit CD80: 299 * QUIT is used by PR#O to turn off everything 
CD49: 8D FB 04 246 SHOUSE STA MODE ; t o enable aoiJse chars CD80 : 300 * 
CD4C:60 247 RTS CD80: CD80 301 QUIT EQU . 
CD4D: 248 • CD80:2C IF CO 302 BIT RD80VID ;were we in 80 columns? 
CD4D: 249 * EXECUTE 'QUIT': CD83:10 03 COBB 303 BPL QUIT2 j•) not ll chance 

CD4D : 250 • CD85: 20 EF CC 304 JSR X.DCIA ; swl tch to 40 columns 
CD4D: CD4D 251 X . NAK EQU . COBB :So OE CO 305 OUIT2 STA CLRALTCHAR ;don't u111e lower case 

CD4D:AD FB 04 252 LDA HOOE ;ONLY VALID IN BASIC CD8B:A9 FF 306 LDA #$FF ; DESTROY THE 

CD50:30 IA CD6C 253 BHI SKRTS ;ignore if pascal CDBll:BO PB 04 307 STA MODE ; MODE BYTE 

CD52 : 20 2E CD 254 JSR D040 ;force 40 colu11.n window CD90 :60 308 RTS 

CD55: 20 80 CD 255 JSR QUIT ;do stuff used by PR#O CD91: 309 • 

CD5 8 : 20 64 CD 256 JSR SETCOUTI ;set o utput hook CD91: 310 * SCRN84 and SCRN48 convert screens between 40 &: 80 col~. 

CD5 B: 257 • CD91 : 311 * WNDTOP nnJst be set up to indicate the last line to 
CD5B:A9 FD 258 SETKEYIN LOA #(KEYIN ;set input hook CD91: 312 * be done . All registe rs are trashed. 
CD5D: B5 39 259 STA KSWH CD91 : 3 13 • 

CD5P:A9 IB 260 LDA #)KEYIN CD91:8A 314 SCRNB4 TXA ;s~lVe X 

CD61:85 38 261 STA KSWL CD92 :48 315 PHA 

CD63 :60 262 RTS CD93:A2 17 316 LDX #23 ;start at bottom of screen 

CD64: 263 • CD95 :80 01 CO 317 STA SET80COL ; allow page 2 acce&s 
CD64 :A9 FD 264 SETCOUTI LOA #(COUTJ ;set output hook CD98 :BA 318 SCRI TICA ;calc base for line 
CD66:85 37 265 STA CSWH CD99: 20 BA CA 319 JSR BASCALC 

CD68:A9 FO 266 LDA l>COUTJ C09C:AO 27 320 LOY #39 ;start at right of screen 
CD6A:85 36 267 STA CSWL CD9E : B4 2A 321 SCR2 STY BAS2L ;save 40 index 
CD6C:60 268 SKRTS RTS CDA0:98 322 TYA ;div by 2 for 80 column i ndex 

CD6D: 269 • COAi :4A 323 LSR A 

CD6D : 
270 ···································•**** CDA2 : BO 03 COA7 324 BCS SCRJ 

CD6D: 271 * NAME : FULL40 CDA4 :2C 55 CO 325 BIT TXTPAGE2 ;even colu11n 9 do page 2 

CD6D: 272 * FUNCTION: SET FULL 4DCOL WINDOW COA7 :AS 326 SCRJ TAY ;ge t 80 index 
CD6D: 273 * INPUT : NONE CDAS:Bl 28 327 LOA ( BASL), Y jget 80 char 

CD60: 274 * OUTPUT : WINDOW PARAMETERS, A•O CDAA : 2C 54 CO 328 BI T TXTPAGEI ;restore pagel 
CD6D: 275 * VOLATILE: AC CDAD:A4 2A 329 LOY BAS2L ;ge t 40 index 
CD6D: 276 ································*······· CDAF : 91 28 330 STA (BASL).Y 

CD6D : 277 * CDBl :88 331 DEY 
CD60: CD6D 278 PULL40 EQU . COB2 :1 0 EA CD9E 332 BPL SCR2 ;do next 40 byte 
CD6D:A9 28 279 LOA #40 ;set window width to 40 CDB4 : CA 333 DEX ;do next line 
CD6P:OO 02 C073 280 BNE SAVWDTH ;• ) {always taken) CDB5 :30 04 CDBB 334 BHI SCR4 ;•)done with setup 
CD71 : 28 1 • CDB7 : E4 22 335 CPX WNDTOP ;a t t op yet? 
CD7 1 : 282 **************************************** CD89 : BO DD CD98 336 BCS SCRI 

C07 1: 283 * NAME FULL80 COBB : 80 00 CO 33 7 SCR4 STA CLR80COL ;clear 80STORE for 40 columns 
CD71: 284 * FUNCTION: SET FULL 80COL WINDOW CDBE :80 OC CO 33B STA CLR80VID ;clear 80VID for 40 columns 
CD7! : 285 * INPUT : NONE CDC! :4C F8 CD 339 JHP SCRNRET ;calc base. restore X, exit 
CD71: 286 • OUTPUT WINDCM PARAMETERS• A•O CDC4: 340 • 

CD71: 2B7 * VOLATILE : AC CDC4:BA 341 SCRN48 TXA ;1u1.ve X 
CD71: 288 ••••••••••••••••••••••••••••••••••• ••••• CDC5 :48 342 PHA 
CD7 1 : 289 • CDC6 :A2 17 343 LOX #23 ;start at botto• of screen 
CD71 :A9 50 290 FULLBO LOA #80 ;set full 80 column window CDC8 : SA 344 SCR5 TXA ;set base fo r current line 
CD73 : 85 2 1 291 SAYWDTH STA WNDWDTH CDC9 : 20 BA CA 345 J SR BASCALC 

CD75:A9 18 292 LOA 824 CDCC : AO 00 346 LOY #0 ;atart a t left of screen 
CD77:85 23 293 STA WNDBTH CDCE :80 01 CO 347 STA SET80COL ;enable page2 store 
CD79:A9 00 294 LOA #0 CODI : Bl 28 348 SCR6 LOA (BASL) ,Y ;get 40 column char 
CD7 B:85 22 295 STA WNDTOP CDD3 :84 2A 349 SCR8 STY BAS2L ;save 40 column index 
CD7D:85 20 296 ST~ WNDLFT CDD5:48 350 PHA ;save char 

CA> 

~ 



(lo) 
CE24 :00 11 CE37 20 BNE INVX •)cur9or off, don't invert co06:98 351 TYA ;div 2 for 80 colu11n index 

(lo) 
0 CE26:48 21 INVERT PHA save AC CDD7 :4A 352 LSR A 

CE27 : 98 22 TYA ANJl y CDD8:BO 03 CODD 3S3 BCS SCR7 ; save on pa.Jul 

CE28 :48 23 PHA CDDA:8D 55 CO 354 STA TXTPAGE2 

CE29:AC 7B 05 24 LOY OURCH ;GET CH cooo:A8 3 55 SC R7 TAY ;get 80 coluan index 

CE2C : 20 44 CE 25 JSR PICK ; GF.T CHARACTER CDDE:68 356 PLA ;now save ch.:.racter 

CE2F:49 80 26 EOR #$80 ; FLIP INVERSE/NORMAL CDOF:91 2 8 357 STA (BASL) , Y 

CE31 : ZO 70 CE 27 JSR STORIT ; ONTO SCREEN COEI : 80 54 CO 358 STA TXTPAGEI ; flip page 1 

CE34 :68 28 PLA ;RESTORE Y COE4 :A4 2A 359 LOY BAS2L ; restore 40 c oluum index 

CE35 : A8 29 TAY ; AND AC. COE6 :CS 360 INY ;move to the right 

CE36 : 68 30 PLA COE7 :CO 28 361 CPY f40 ;at right yet? 

CE37 :60 31 INVX RTS CDE9 :90 E6 CODI 362 BCC SCR6 ;•)no, do next colu11.n 

CE38: 32 •••••••••••••••••••••••••••••••••••••••• CDEB:20 BO CC 363 JSR CLRHALF ;clear half of screen 

CE38 : 33 * NAME STORCHAR COEE:CA 364 DEX ;else do next line of 

CE38: 34 * FUNCTION: STORE A CHAR ON SCREEN CDEF:30 04 COPS 365 BM! SCR9 ;•)done with top line 

CE38: 3S * INPUT AC•CHAR CDFI :E4 22 366 CPX WNDTOP ;at top yet? 

CE38: 36 • Y•CH POSITION CDF3: BO 03 CDC8 367 BCS SCRS 

CE38: 37 * OUTPUT : CHAR ON SCREEN CDF5: SD OD CO 368 SCR9 STA SET80VID ;convert to 80 columns 

CE38 : 38 * VOLATILE : NOTHING CDFB: 20 FE CU 369 SCRNRET JSR VTAB ;update base 

CE38 : 39 * CALLS SCREENIT CDFB:68 370 PLA ;restore X 

CE38 : 40 ••••• ••••••••••••••••••••• •••••••••••••• CDFC:AA 371 TAX 

CE38 : 41 • CDFD : 60 372 RTS 

CE38: CE38 42 STORCHAR EQU * CDFE: 373 • 

CE38 : 48 43 PHA ;SAVE AC CDFE:A5 25 374 VTAB LOA CV ;get 80 column CV 

CE39:24 32 44 BIT INVFLG ;NORMAL OR INVERSE! CEOO :SD PB 05 375 STA OURCV ;copy to OURCV 

CE3B:30 02 CE3F 4S BHI STOR2 ;• )NORMAL CE03: 20 BA CA 376 VTABZ JSR BASCALC ;calc hase address 

CE3D:29 7F 46 AND 6$7F ; inverse it CE06 :AS 20 377 LOA WNDLFT ;and add window left to it 
CE3F: CE3F 47 STOR2 EQU . CE08 :2C IF CO 378 BIT RD80VID i is tt 80 co l u!llns? 

CE3F:20 70 CE 48 JSR STORIT ;•>do it!! CEOB:IO 01 CEOE 379 BPL VTAB40 ;window width ok 

CE42 :68 49 PLA ;RESTORE AC CE0D:4A 380 LSR A ;else divide width by 
CE43:60 SO SEV RTS CEOE:l8 381 VTAB40 CLC ;prepare to add 

CE44: 51 ............... .......................... CEOF:65 28 382 ADC BASL ;add in window left 
CE44: 52 * NAME PICK CEii :BS 28 383 STA BASL ;and update base 
CE44: 53 * FUNCTION: GET A CHAR FROM SCREEN CEl3 :60 384 VTABX RTS ;and exit 

CE44: 54 * INPUT Y•CH POSITION CEl4: 29 INCLUDE SUBS3 

CE44 : 55 * OUTPUT AC•CHARACTER CEl4 :C9 El I UPSHFT CMP #$El ;is it lowercase ? 

CE44: 56 * VOLATILE: NOTHING CEl6 :90 06 CEI E 2 BCC UPSHFT2 ;•)nope 

CE44: 57 * CALLS : SCREENIT CEl8:C9 FB 3 CMP # $FB ;lowercase? 

CE44: 58 •••••••••••••••••••••••••••••••••••••••• CEIA: BO 02 CEIE 4 BCS UPSHFT2 ;•>nope 

CE44: 59 • CEIC:29 OF 5 AND #$OF ;else upshift 

CE44: Bl 28 60 PICK LOA (BASL), Y ;get 40 column character CEIE :60 6 UPSHFT2 RTS 

CE46:2C IF CO 61 BIT RD80VID ; 80 columns? CEIF: 7 • 

CE49: 10 19 CE64 62 BPL PICK3 ;•)no, do text shift CEIF: 8 **************************************** 
CE4B 80 01 CO 63 STA SETBOCOL ; force 80STORE for 80 columns CEii': 9 * NAME : INVERT 

CE4E 84 2A 64 STY BAS2L ;temp store for positioo Cl!.IF : 10 * FUNCTION: INVERT CHAR AT CH/CV 

CE50 98 65 TYA ; di vi de CH by two CEIF: II * Unless Pascal and M .. CURSOR•l 

CE51 4S 20 66 EOR WNDLFT ;C•l if char in main RAM CEIF: 12 • INPUT : NOTHING 

CES3 6A 67 ROR A ;get l ow bit into carry CEIF: 13 * OUTPUT CHAR AT CH/CV INVERTED 

CES4 BO 04 CESA 68 BCS PICKi ;• )store in mRin memory CEIF: 14 * VOLATILE: NOTHING 

CES6 AD 55 CO 69 LOA TXTPAGE2 ;else switch in page 2 CEIF: IS * CALLS PICK, STORCHAR 

CE59 CB 70 !NY ;for odd left, aux bytes CEIF: 16 •••••••••••••••••••••••••••••••••••••••• 

CESA 98 71 PICKi TYA ;divide poeltlon by 2 CEIF: 17 • 

CE5B 4A 72 LSR A ;and use carry as CEIF:AD FB 04 18 PASINV LOA MODE ;check pascal cursor fla~ 

CESC A8 73 TAY ; page indicator CE22:29 10 19 AND #M.CURSOR ;before displaying cursor 



(..) 
(..) ...... 

CE5D:81 28 
CE5F:2C 54 CO 
CE62 :A4 2A 
CE64 :2C IE CO 
CE67:10 06 
CE69:C9 20 
CE6B:BO 02 
CE6D:09 40 
CE6F:60 
CE70: 
CE70: 
CE70: 
CE70 : 
CE70: 
CE70 : 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70:48 
CE71 :29 FF 
CE73:30 16 
CE75 : AD FB 04 
CE78 :6A 
CE79:68 
CE7A:48 
CE7B:90 OE 
CE7D:2C IE CO 
CE80: 10 09 
CE82 :49 40 
CE84: 2C AC CE 
CE87 :FO 02 
CE89 :49 40 
CE88 : 
CE8B:2C IF CO 
CE8E:l0 ID 
CE90 :80 0 1 CO 
CE93:48 
CE94 :84 2A 
CE96:98 
CE97 :45 20 
CE99 :4A 
CE9A:BO 04 
CE9C:AD 55 CO 
CE9F:C8 
CEA0:98 
CF.Al :4A 
CEA2 AB 
CEA3 68 
CEA4 91 28 
CEA6 AD 54 CO 
CEA9 A4 2A 

CE6F 

CE6F 

CE88 

CE88 

CE8B 

CE88 

CEAD 

CEAO 

74 PICK2 LDA (BASL),Y i get that char 
75 BIT TXTPAGEl ; flip to page l 
76 LDY BAS2L 
77 PICK3 BIT ALTCHARSET ;only allow mouse text 
78 BPL PICK4 ;if alterna.te character set 
79 CMP 1$20 
80 BCS PICK4 
81 ORA #$40 
82 PICK4 RTS 
83 • 

84 **************************************** 
85 * NAME : STORIT 
86 * FUNCTION: STORE CHAR 
87 * INPUT AC•char for store 
88 • : Z•high bit of char 
89 • : Y•CH POSITION 
90 * OUTPUT AC•CHAR (PICK) 
91 * VOLATILE: NOTHING 
92 * CALLS : NOTHING 
93 •••••••••••••••••••••••••••••••••••••••• 
94 • 
95 STORIT PHA ;sRve char 
96 AND #$FF : if high bit set ... 
97 BHI STORE! ;"")not •ouse text 
98 LOA HOOE ; ts 111ouse text enabled? 
99 ROR A ;use carry as flag 

100 PLA ;and restore char 
101 PHA ;need to save it too 
102 BCC STORE! 
103 BIT ALTCHARSF.T ;only dC'I mouse text if 
104 BPL STORE! ;alt char set switched in 
105 EOR #$40 ;do mouse shift 
106 BIT HEX60 ;is it in proper range? 
107 BEQ STORE! ;•)yes, leave it 
108 EOR #$40 ;else shift it back 
109 • 
110 STORE! RlT RD80VID ;80 columns? 
111 BPL STOR40 ;•)no, 40 columns 
11 2 STA SET80COL ; force SOS TORE for 80 columns 
113 PHA ;save shifted character 
114 STY 8AS2L ; temp storage 
115 TYA ;.e;et position 
116 EOR I/NOL FT ;C•l if char tn main RAM 
117 LSR A 
118 BCS STORE2 ;•)yes 1 main RAM 
119 LDA TXTPAGE2 ;else flip in main RAM 
120 INY ;do this for odd left byteR 
121 STORE2 TYA ;get position 
122 LSR A ;and divide it by 2 
123 TAY 
124 STORIT2 PLA restor'! ace 
125 STA (BASL),Y save to screen 
126 LDA TXTPAGEl flip to riage l 
127 LOY 8AS2L 

CEAB :68 128 PLA ; restore true Ac.c 
CEAC:60 129 HEX60 RTS ;and exit 
CEAD: 130 • 
CEAD:91 28 131 STCR40 STA (BASL),Y ;quick 40 coluan store 
CEAF:68 132 PLA ;res tore real char 
CEB0:60 133 RTS 
CEBI: 134 ************************"'*************** 
CEBI : 135 * NAME : ESCON 
CEBI: 136 * FUNCTION: TURN ON 'ESCAPE' CURSOR 
CEBI: 137 * INPUT : NONE 
CEBl: 138 * OUTPUT : 'CHAR'•ORIGINAL CHAR 
CEBI: 139 * VOLATELE: NOTHING 
CE Bl : 140 * CALLS : PICK, STORCHAR 
CEBI: 141 *********************************••11•••• 
CEBl: 142 • 
CEBI: CE81 143 ESCON EQU . 
CEBI : 48 144 PHA ;SAVE AC 
CE82 :98 145 TYA ; ANDY 
CEB3:48 146 PHA 
CEB4 : AC 78 05 147 LOY OURCH ;GET CH 
CEB7 : 20 44 CE 148 JSR PICK ;GET ORIGINAL CHARACTER 
CEBA: 8D 7.8 06 149 STA CHAR ; AND REMEMBER FOR ESCOFF 
CE8D:29 80 150 AND #$80 ; SAVE NORMAL/ INVERSE BIT 
CEBF:49 AB 151 EOR #$AB ;HAKE IT AN INVERSE '+' 
CECI : 4C CD CE 152 JMP ESCRET ; RETURN V lA S !MILAR CODE 
CEC4: I SJ *************************************,.** 
CEC4: 154 * NAME : ESCOFF 
CEC4: 155 * FUNCTlON: TURN OFF 'ESCAPE' CURSOR 
CEC4: 156 * INPUT 'CHAR '•ORIGINAL CHAR 
CEC4: 157 * OUTPUT NONE 
CEC4: 158 * VOLATILE: NOTHING 
CEC4: 159 • CALLS STORCHAR 
CEC4: 160 •••••••••••••••••••••••••••••••••••••••• 

CEC4: 161 * 
CEC4: CEC4 162 ESCOFF EQU . 
CEC4 :48 163 PHA ;SAVE AC 
CEC5 :98 164 TYA ; ANDY 
CEC6 :48 165 PHA 
CEC7:AC 78 05 166 LOY OURC H ; GET CH 
CECA : AD 78 06 167 LOA CHAR ;GET ORIGINAL CHARACTER 
CECO: CECO 168 ESCRET EQU . ; USED BY ESCON 
CECD:;>,p 70 CE 169 JSR STORIT EXACTLY AS IT WAS 
CE00:68 170 PLA ;RESTORE Y 
CEDI : AB 171 TAY 
CED2 : 68 172 PLA ; AND AC 
CED3 :60 173 RTS 
CED4: 174 ••**********************************"""*** 
CED4 : 175 • NAME PSETUP 
CED4: 176 * FUNCTION: SETUP ZP FOR PASCAL 
CED4 177 • INPUT NONE 
CED4 17d • OUTPUT NONE 
CED4 179 • VOLATILE AC 
CED4 180 • CALLS NOTHING 
CED4 181 •••••••••• *************•*************** 



c..> CED4 182 • 0000: 0000 1 nsT EQU 
c..> CED4 CED4 183 PSBTUP EOU . I\) 

CED4 20 71 CD 184 JSR FULL80 : SET FULL 80COL WINDOW 0000: 2 LST On,A,V 
CED7 A9 PP 185 IS80 LOA 1255 0000: 0001 J I RQTEST EQU 1 
CED9 85 32 186 STA INVFLG ; ASSUME NORMAL HOOE 0000 : 4 KSB ON : SET THEM HI Bl TS 
CEDB 187 • 0000 : 0000 5 00 TES'f 
CEDB AD FB 04 188 LOA HOOE s 6 F80RG EQU $1800 
CEDE 29 04 189 AND IM.VHODE s 7 IOAOR EQU S2000 ;For settin~ PR# hooks 
CEEO:FO 02 CEE4 190 BEO PSETUPRET ;•>IT'S NORMAL s 8 ClORG EQU $2100 
CEE2 :46 32 191 LSR INYFLG ; MAKE IT INVERSF. s 9 C30RG EQU $2300 
CEE4: 192 • s 10 C80RG EQU $2800 
CEE4: CEE4 193 PSETUPRET EQU * 0000: II ELSE 
CEE4: AD 78 07 194 LOA OLDBASL ; SET UP BASE ADDRE SS 0000: F800 12 F80RG EOU $F800 
CEE7:85 28 195 STA BASL 0000 : ClOO 13 ClORG EQU $Cl00 
CEE9: AD FB 07 196 LOA OLD BASH 0000 : C300 14 C30RG EQU $C300 
CEEC:85 29 197 STA BASH 0000: C800 15 C80RG EQU $C800 
CEEE : AD FB 05 198 LDA OUR CY ;get user's cur so r verticl\l 0000: 16 FIN 

CEFl :85 25 199 STA CY ;and set it up 
CEF3 :60 200 RTS 0000 : 2 ·······················•••111••••• 
CEF4: 201 **************************************** 0000: J • 

CEF4: 202 • 0000: 4 * APPLE ll 
CEF4: 203 * COPYROM is called when the video ti raware is 0000: 5 * MONITOR ll 
CEF4: 204 * initialized. If the language card is switched 0000: 6 • 

CEF4: 205 * in for reading, it copies the F8 ROM to the 0000: 7 * COPYRIGHT 1978, 1981, 1984 BY 
CEF4: 206 * language card and restores the 11tate of the 0000: 8 * APPLE COMPUTER, I NC . 
CEF4: 207 * language card. 0000: 9 • 

CEF4 : 208 • 0000: 10 * ALL RIGHTS RESERVED 
CEF4:2C 12 CO 209 COPYROM BIT RDLCRAM ;is the LC switched in? 0000: 11 • 

CEf7 : 10 30 CF36 210 BPL ROMOK ;•>no, do nothing 0000: 12 * S. WOZNIAK 1977 
CEF9 : A9 06 211 LOA IC.OODF8 ;yes, check $F8 RAM 0000: 13 * A. SAUM 1977 
CEFB :CD BJ FB 212 CHP F8VERSION ;does it match? 0000: 14 • JOHN A NOV 1978 

CEFE:FO 36 CF36 213 BEQ RO MOK ;•> aesum ROM is there 0000: 15 * R. AURICCHIO SEP 1981 

CFO~:A2 03 214 LOX #3 ;indicate bank 2, RAM write enabled 0000: 16 • E. BEERNINK 1984 
CF02:2C 11 CO 215 BIT ROLCBNK2 ;iR it bank 2? 0000: 17 • 

CP05 :30 02 CF09 216 BMI BANX2 j-)yes, we we re r ight 0000: 0001 18 APPLE2F. EQU 1 ;COND ASSM/RRA0981 
CF07 : A2 OB 217 LOX #$B ;no, bank I , RAH write enabled 0000: 19 • 

CF09: 80 BJ FB 218 BANK2 STA F8VERSION ;write to see if LC is 0000 : 20 ******************************** 
CPOC:2C 80 co 219 BIT $C080 ;wr He protected (read RAM ) F800 : F800 21 ORG P80RG 
CFOF : AO 83 FB 220 LOA FSVERSION ;did it change? F800 : 2000 22 OBJ $2000 
CFl2 :C9 06 221 CMP #GOODF8 F800 : 23 ******************************* 
CFl 4:FO 01 CF! 7 222 BEQ WRTENBL ;•)yes, write e nabled F800 : 24 • 

CF16:E8 223 INX ;ehe indicate write pt"otect F800 : 25 * Zero Page Equates 
CFl 7 :2C 81 CO 224 WRTENBL BIT $C081 ;read ROH, write RAM F800 : 26 • 

CF1A : 2C 81 CO 225 BIT $C081 ; twice is nice F800: 0000 ' 27 LOCO EOU $00 ;vector for aut ost fro11. disk 
CFlD:AO 00 226 LOY #$0 j now c opy ROH to RAM F800: 0001 28 LOCI EQU $01 
CF1F:A9 F8 227 LOA f$F8 F800: 0020 29 WNDLFT EQU $20 ;left edge o f text window 
CF21 :85 37 228 STA CSWH ;hooks set later F800: 0021 JO WNDWDTH EQU $21 ;width of text window 
CF23:84 36 229 STY CSWL F800: 0022 31 WNDTOP EQU $22 jtop of text window 
CF25:Bl 36 230 COPYROM2 LOA (CSWL), Y ;get a byte F800: 0023 32 WNDBTM EQU $23 ;bottom+l of text window 
CF27:91 36 231 STA (CSWL), Y ; and move it F800: 0024 3J CH ECU $24 ;cursor horizontal position 
CF29:C8 232 INY F800 : 0025 34 CV EOU $25 ;c ursor vertical position 
CF2A:DO F9 CF25 233 BNE COPYROM2 F800 : 0026 35 GBASL EQU $26 ; lo-res .ii:raphics base addr. 
CF2C:E6 37 234 INC CSWH ;next page F800 : 0027 36 GBASH ECU $27 
CP2E:OO F5 CF25 235 BllE COPYROM2 ; finish copy F800: 0028 37 BASL EQU $28 ;text base address 
CFJO:BD 80 CO 236 LOA $C080,x ;read RAM 
CF33 : BD 80 CO 237 LOA $C080,x 
CFJ6:60 2J8 ROMOK RTS ; done with ROM copy 



U> 
U> 
U> 

F800 : 
F800 : 
FBOO: 
F800 : 
FBOO: 
FBOO: 
F800: 
FBOO: 
F800 : 
P800 : 
F800 : 
FBOO : 
F800: 
F800: 
F800: 
F800: 
F800: 
F800 : 
F800 : 
F800 : 
FBOO : 
F800 : 
F800 : 
F800: 
FBOO: 
F800 : 
FBOO: 
F800 : 
FBOO: 
FBOO : 
PBOO : 
F800 
PBOO 
F800 
F800 
F800 
F800 
F800 
FBOO 
F800 
FBOO 
F800 
FBOO 
FBOO 
F800 
FBOO 
F800 
F800 
P800 
F800 
FBOO 
FBOO 
P800 
F800 

0029 
002A 
0028 
002C 
002C 
0020 
002D 
002E 
002E 
002E 
002F 
002F 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
003A 
003B 
003C 
OOJD 
003E 
003F 
0040 
0041 
0042 
0043 
0044 
0044 
004S 
0045 
0046 
0047 
0048 
0049 
004E 
004F 

0095 

0200 

03FO 
03F2 
03F4 
03F5 
03F8 

38 BASH EOU $29 
39 BAS2L EQU S2A 
40 BAS2H llQU $28 
41 H2 EQU $2C 
42 LMNEH EQU $2C 
43 V2 EQU $20 
44 RMNEH EOU $20 
4S MASK RQU $2E 
46 CHKSU>I EQU $2E 
47 FORMAT EOU $2E 
48 LASTIN EOU $2F 
49 LENGTH EQU $2F 
SO COLOR EQU $30 
SI HOOE EQU $31 
52 INVFLG EQU $32 
SJ PROMPT EQU $33 
54 YSAV EQU $34 
55 YSAVl EQU $35 
56 CSWL EQU $36 
57 CSlffl EQU $37 
SB KSWL EOU $38 
59 KSWH EQU $39 
60 PCL EQU $3A 
61 PCH EQU $3B 
62 AIL llQU $3C 
63 AlH EQU $30 
64 A2L F.QU $3E 
6S A2H EQU $3F 
66 AJL EQU $40 
67 AJH EQU $41 
68 A4L EQU $42 
69 A4H EQU $43 
70 ASL EQU $44 
71 MACSTAT EQU $44 
72 ASH EQU $45 
73 ACC EOU $4S 
74 XREG EQU $46 
75 YREG F.QU $47 
76 STATUS EQU $48 
77 SPNT EQU $49 
78 RNDL EQU $4E 
79 RNDH EQU $4F 
80 * 
81 PICK EQU $95 
82 * 
83 lN EQU $0200 
84 * 
85 • Page 3 vec tors 
86 * 
87 BRJ<V EOU $03FO 
88 SOFTEV EQU $03F2 
89 PWREDUP EQU $03F4 
90 AMPERV EQU $03F5 
91 USRADR EQU $03F8 

; temp base for s c rolling 

; temp for lo-res graphics 
; tellp for nmemonic decoding 
; temp for lo-res graphics 
;t emp for mnemoni c decoding 
;color IUSk for lo-res gr. 
; t e•p for o pcode decode 
; temp for opcode decode 
; te•p for tape read csu'lll. 
; temp for opcode decode 
;color for lo-res ~raph1..cs 
;Monitor Rode 
;normal/inverse( If lash) 
;prompt character 
;position in Monitor con1mand 
; tei.p for Y regtster 
;character output hook 

jcharacter input hook 

;te11p for pro1nam c ounter 

;Al-A5 are Monitor temps 

;•achine state for break 

;Ace ollfter break ( destroys ASH) 
;X reg after break 
;Y reg After bre ak 
; P reg after breAk 
; SP after break 
; random. counter low 
;random counter high 

;CONTROL-U character 

;input buffer f o r CETLN 

ve c tors here after break 
vector for warm. start 
THIS HUST • EOR #$AS OF SOFTEV+I 
AFPLESOFT & EXIT VECTOR 
Appleaoft USR functi on vector 

FBOO: 03FB 92 NKI EQU $03FB ;NMI vector 
FBOO : 03FE 93 IRQLOC EQU $03FE ;Maskable interrupt vector 
FBOO : 94 * 
FBOO: 0400 9S LINE! EQU $0400 ;first 1 ine of text Rcreen 
FBOO: 07F8 96 HSLOT EQU $07F8 ;current user o f sea space 
F800: 97 * 
F800: 0000 98 DO TEST 
F800 : 99 ELSE 
F800 : cooo 100 IOADR EQU $COOO 
F800: 101 FIN 
FBOO: 102 * 
FBOO: cooo 103 KBD EOU $C000 
FBOO: C006 104 SLOTCXROH EQU $C006 ;enable slots 1-7 
FBOO: C007 !OS INTCXROM EQU $C007 ;swap out slots for firmware 
FBOO: COIO 106 KBDSTRB EQU $COIO 
F800 : COIF 107 RD80VID EQU $COIF 
PBOO : C020 108 TAFEOUT EQU $C020 
P800 : C030 109 SPKR EQU $C030 
F800: co so 110 TXTCLR EQU $C050 
FBOO : COS! 111 TXTSET l!QU $C051 
F800: COS2 112 HIXCLR EOU $COS2 
FBOO: C053 113 HIXSET EQU $CO S3 
FBOO: COS4 114 LOWSCR EQU $C054 
F800: COSS llS HISCR EOU $COSS 
F800 : C056 116 LORES EQU $C056 
F800: COS7 117 HI RES EQU $C057 
FBOO : COSS 118 SETANO EOU $COS8 
F800 : COS9 119 CLRANO EQU $C059 
FBOO : COSA 120 SETANI EQU $C0SA 
FBOO : COSB 121 CLRANl EQU $COSB 
P800: cosc 122 SETAN2 EQU $COSC 
FBOO: C05D 123 CLRAN2 EQU $COSD 
FBOO: COSE 124 SETAN3 EQU $COSE 
F800: COSF ! 2S CLRAN3 EQU $C05F 
F800 : C060 126 TAFEIN EQU $C060 
FBOO: C064 127 PADDLO EQU $C064 
FBOO: C070 128 PTRIG EQU $C070 
F800 : 129 * 
FBOO: C3FA 130 IRQ EQU C30RG+$FA ; IRQ entry i n $CJ page 
F800: C47C 131 IRQFIX EQU C30RG+$17C ;Restore state at IRQ 
FBOO: 132 * 
FBOO : C567 133 XHEADER EQU C30RG+$267 
F800: CSDl !34 XREAD EQU C30RG+$2Dl 
FBOO: CSAA !JS WRITE2 EQU C30RG+$2AA 
FBOO : 136 * 
F800 : CFFF 137 CLRROH EQU $CFFF 
FBOO: EOOO !38 BASIC EQU $EOOO 
FBOO : E003 139 BASIC2 EQU $E003 
FBOO : 140 * 
F800 4A 141 PLOT LSR A Y-COORD/2 
F801 08 142 PHP SAVE LSB IN CARRY 
F802 20 47 F8 143 JSR GBASCALC CALC BASE ADR IN GBASL,H 
F805 28 144 PLP RESTORE LSB FROM CARRY 
F806 A9 OF 145 LDA #$OF MASK $OF IF EVEN 



~ F808,90 02 F80C 146 BCC RTJIASK F86l ' 18 200 CLC 

.c. F80A,69 EO 147 AOC #$EO ;MASK $FO lF ODD F862 ' 69 03 201 ADC #$03 

F80C' 85 2E 148 RTMASK STA MASK F864,29 OF 202 SETCOL AND # $OF ;SETS COLOR•l 7*A HOD 16 

F80E , Bl 26 149 PLOT! LDA (GBASL ), Y ;DATA F866 , 85 30 203 STA COLOR 

F810 , 45 30 150 EOR COLOR ; XOR COLOR. F868 ' OA 204 ASL A ; BOTH HALF BYTES OF COLOR EQUAL 

F812 , 25 2E 151 AND MASK ; AND MASK F869 , 0A 205 ASL 

F814,5l 26 152 EOR (GBASL), Y : XOR DATA F86A,OA 206 ASL 

F8 16,91 26 153 STA (GBASL ), Y TO DATA F868 , 0A 207 ASL A 

F818 , 60 I 54 RTS F86C,05 30 208 ORA COLOR 

F819' 155 • F86E' 85 30 209 STA COLOR 

F819,20 00 F8 156 HLlNE JSR PLOT ; PLOT SQUARE F870 ' 60 210 RTS 

F81C , C4 2C 15 7 HLINEl CPY H2 ;DONE? F87 l' 211 • 

F81E<BO ll F831 158 BCS RTSI ; YES, RETURN F87 l ,4A 212 SCRN LSR A ; READ SCREEN Y-COORD/2 

F820,C8 159 INY ; NO , INCR INDEX (X- COORD) F872 '08 21 3 PHP ;SAVE LSB (CARRY) 

F82 l '20 OE F8 160 JSR PLOT! ; PLOT NEXT SQUARE F873 '20 47 F8 214 JSR GBASCALC ; CALC BASE ADDRESS 

F824 , 90 F6 F81C 161 BCC HLINEI ; ALWAYS TAKEN F876 , Bl 26 215 LOA (GBASL),Y ;GET BY TE 
F826,69 0 1 162 VLINEZ AOC #$01 ; NEXT Y-COORD F878 , 28 216 PLP ; RESTORE LSB FROM CARRY 

F828 , 48 163 VLINE PHA ; SAVE ON STACK F8 79,90 04 F87F 217 SCRN2 BCC RTMSKZ ; IF EVEN, USE LO H 

F829,20 00 F8 164 JSR PLOT ; PLOT SQUARE F87B,4A 218 LSR 

F82C,68 165 PLA F87C ,4A 219 LSR 

F82U ,C5 2D 166 CHP V2 ;DONE? F870 , 4A 220 L SR A ;SHIFT HIGH HALF BYTE DOWN 

F82F,90 F5 F826 167 BCC VLINEZ ; NO, LOOP, F8 7E,4A 22 l LSR A 

F831' 60 168 RTSl RTS F87F,29 OF 222 RTMSKZ AND #$OF ;MASK 4 - RITS 

F832' 169 • F88l , 60 223 RTS 

F832 , AO 2F 170 CLRSCR LOY #$2F ; MAX Y, FULL SCRN CLR F882 ' 224 • 

F834 'DO 02 F838 171 BNE CLRSC2 ; ALWAYS TAKEN F882 , A6 3A 22 5 INSOS l LDX PCL ;PRINT PCL,H 

F836' AO 27 172 CLRTOP LDY #$27 ;MAX Y , TOP SC RN CLR F884 ' A4 3B 226 LOY PCH 

F838 , 84 20 17 3 CLRSC2 STY V2 i STORE AS BOTTOM COORD F88 6 ' 20 96 FD 227 JSR PRYX2 

F83 A' 174 : FOR VLINE CALLS F889 , 20 48 F9 228 JSR PRBLNK ; FOLLOWED BY A BLANK 

F83A , AO 27 175 LDY #$27 ;RIGHTMOST X-COORD (COLUMN) F88C , Al 3A 229 LOA (PCL,X) ;GET OPCOM 

F83C, A9 00 176 CLRSC3 LOA #$00 ; TOP COORD FOR VLINE CAL LS F88E 'AB 230 INSDS2 TAY 

F83E,85 30 177 STA COLOR ;CLEAR COLOR (BLACK) F88F , 4A 231 LSR A ; F.VEN/OUD TEST 

F840' 20 28 F8 178 JSR VLINE ;ORAW VLINE F890,90 09 F89B 232 BCC IF.VEN 

F843,88 179 DEY ; NEXT LEFTMOST X-COORO F892 ' 6A 233 ROR A ;BIT I ·rEST 

F844,IO F6 F83C 180 BPL CLRSC3 ; LOOP UNTIL DONE, F893 , BO 10 F8A5 234 'BCS ERR ; XXXXXXl 1 INVALID OP 

F846 ' 60 181 RTS F895 ' C9 A2 235 CMP #$A2 

F847' 182 .. F89 7 ,FO OC F8A5 236 BEQ ERR ;OPCODE $89 INVALID 

p947 , 49 183 GBASCALC PHA ;FOR INPUT OOOEFGH F899,29 87 237 AND 1$87 ;MASK BlTS 

F848 , 4A 184 LSR A F89B ,4A 238 IEVEN LSR A ; LSB INTO CARRY FOR L/R TEST 

F849,29 03 185 AND #$03 F89C 'AA 239 TAX 

F84B,09 04 186 ORA f. $04 ;GENERATE GBASH•OOOOOI FC F89D,BD 62 F9 240 LDA FMT l , X ;GET FORMAT INDEX BYTE 

F84D,85 27 187 S'fA GBASH F8A0,20 79 F8 241 JSR SCRN2 ; R/L H-BYTE ON CARRY 

F84F , 68 188 PLA ; AND GBASL•HDEDEOOO F8A3 'DO 04 F8A9 242 BNE GETFMT 

F850,29 18 189 AND #$18 F8A5,AO 80 24 3 ERR LOY 1$80 ;SUBSTITUTE $80 FOR INVALID OPS 

F852 '90 02 F856 190 BCC GBCALC F8A7 ' A9 00 244 LDA #$00 ;SET PRINT FORMAT INDEX TO 0 

F854' 69 7F 191 AOC P$7F F8A9 'AA 245 GETFMT TAX 

F856 , 85 26 192 GBCALC STA GBASL F8AA , BD A6 F9 246 LDA FMT2,X ; INDEX INTO PRINT FORMAT TABLE 

F858,0A 193 ASL A F8A0,85 2E 247 STA FORMAT ; SAVE FOR ADR FIELD FORMATTING 

F859 , 0A 194 ASL A F8AF' 248 ; (O• l BYTE, 1-2 BYTE, 2•3 BYTE) 

F8 5A , 05 26 195 ORA GBASL F8AF' 249 • 

F85C , 85 26 196 STA GBASL F8AF ' 250 * Move code to Cl -C2 because the corle 

F85E,60 197 RTS F8AF ' 251 * that tests f or ROM in slot 3 must be i n 

F85F ' 198 • F8AF ' 252 * the F8 ROM. 

F85F ' A5 30 199 NXTCOL LDA COLOR ; INCREMENT COLOR BY 3 F8AF' 253 • 



U> 
U> 
CTI 

F8Al:AA 
F8B0:84 2A 
F8B2 :AO 10 
F884 : 4C 84 PB 
F887: 
F887: 
F8B7: 
F8B7: 
F8B7: 
F887: 
F8B7: 
F887 : SD 06 CO 
F8BA:A2 02 
F8BC:BD 05 C3 
F88F:DD 9C FC 
FSC2 :DO 07 F8CB 
F8C4 :CA 
F8CS :CA 
FBC6: 10 F4 FSBC 
FSC8:88 
PSC9:00 EF FBBA 
FSCB:8D 07 CO 
F8CE:60 
F8CF: 
F8CF:EA 
FBDO: 
PSD0:20 82 F8 
F8D3 :4S 
PBD4 :Bl 3A 
P8D6 :20 DA FD 
F8D9:A2 01 
FSDB:20 4A F9 
FBOE:C4 2F 
FSEO :CB 
F8El ,90 Fl F8D4 
F8E3:A2 03 
F8E5:CO 04 
F8E7 :90 F2 -F8DB 
FSE9 :68 
F8EA:A8 
FBEB:B9 CO F9 
FBEE:BS 2C 
FBFO: B9 00 FA 
FSP3 :BS 2D 
FBFS:A9 00 
P8F7 :AO OS 
FSF9 :06 2D 
F8F8:26 2C 
F8PD:2A 
F8FE:S8 
F8FF:DO FB F8P9 
F901:69 BF 
F903: 20 ED FD 
F906 :CA 

254 TAX ;save ACC in X 
255 STY BAS2L ;and Y in acrolling temp 
256 I.DY 1$10 ;call • finish mnemonics 
257 JMP GOTOCX ;off to CIOO 
258 • 
2S9 * Test slot 3 for a card containing ROM. 
260 * If there is one, we'll not switch in our internal 
261 * slot 3 firmware (for 80 columns). 
262 • On entry Y has a high value like $F2, so the 
263 * ROH/bus is read a bunch of times 
264 • 
265 TSTROM STA SLOTCXROM ;swap in slots 
266 TSTROMO LDX 12 ; check. 2 ID bytes 
267 TSTROMI LDA SC305,X ;at C305 and SC307 
268 CMP CLREOL,X ;with two bytes that are same 
269 BNE XTST 
270 DEX ;check next ID byte 
271 DEX 
272 BPL TSTROMI 
273 DEY 
274 BNE TSTROMO ; if ROH ok., ext t with BEQ 
275 XTST STA INTCXROM ;swap internal ROH 
276 RTS iand return there 
277 • 
278 NOP ;line things up 
279 • 
280 INSTOSP JSR lNSDSl ;GEN FMT, LEN BYTES 
281 PHA ; SAVE MNEMONlC TABLE INDEX 
282 PRNTOP LDA (PCL), Y 
283 JSR PRBYTE 
284 LOX #$01 ;PRlNT 2 BLANKS 
285 PRNTBL JSR PRBL2 
286 CPY LENGTH ;PRINT INST (1-3 BYTES) 
287 INY ; IN A 12 CHR FIELD 
288 BCC PRNTOP 
289 LOX #$03 ; CHAR COUNT FOR MNEMONIC INDEX 
290 CPY #$04 
291 BCC PRNTBL 
292 PLA ; RECOVER MNEMONIC INDEX 
293 TAY 
294 LOA MNEML,Y 
29S STA LMNEM ;FETCH 3-CHAR MNEMONIC 
296 I.DA HNEHR, Y ; (PACKED INTO 2-BYTES) 
297 STA RMNEM 
298 PRMNI LOA #$00 
299 LOY #SOS 
300 PRMN2 ASL RMNEH ;SHIFT 5 BITS OF CHARACTER INTO A 
301 ROL LHNEH 
302 ROL A ; (CLEARS CARRY) 
303 DEY 
304 BNE PRMN2 
30S ADC #$BF ; ADD "?II OFFSET 
306 JSR COUT ; OUTPUT A CHAR OF MNF.M 
307 DEX 

F907 00 EC FSF5 30S BNE PRMNl 
F909 20 48 F9 309 JSR PRBLNK ; OUTPUT 3 BLANKS 
F90C A4 2F 310 LOY LENGTH 
F90E A2 06 311 LOX #$06 ;CNT FOR 6 FORMAT BITS 
F910 EO 03 312 PRADRI CPX #$03 
F912 FD IC F930 313 BEO PRADR5 i IF X•3 THEN AnDR. 
P914 06 2E 314 PRADR2 ASL FORMAT 
F916:90 OE F926 315 BCC PRADR3 
F918:BD 83 F9 316 LOA CKARl-1,X 
P91B:20 ED FD 317 JSR COUT 
F91E:BD 89 F9 3!S LOA CHAR2-l ,X 
P921: PO 03 F926 JI 9 BEQ PRADR3 
F923 :20 ED FD 320 JSR COUT 
F926 :CA 321 PRADR3 DEX 
P927:DO E7 F910 322 BNE PRADRI 
F929:60 323 RTS 
F92A:S8 324 PRADR4 DEY 
F92B:30 E7 F9!4 325 BMI PRAOR2 
F92D: 20 DA FD 326 JSR PR BYTE 
F930:AS 2E 327 PRADRS LOA FORMAT 
F932 :C9 E8 32S CHP #SES ;HANDLE REL ADR MODE 
F934: Bl 3A 329 LOA (PCL),Y ;SPEClAL (PRINT TARGET, 
P936:90 F2 F92A 330 BCC PRADR4 ; NOT OFFSET) 
F938: 20 56 F9 331 RELADR JSR PCADJ3 
F93B:AA 332 TAX ;PCL,PCH+OFFSET+l TO A,Y 
F93C :ES 333 INX 
F93D:OO 01 F940 334 BNE PRNTYX ;+1 TO Y,X 
P93F :C8 33S lNY 
F940 :98 336 PRNTYX TYA 
F941 :20 DA FD 337 PRNTAX JSR PRBYTE ; OUTPUT TARGET ADR 
F944 :SA 33S PRNTX TICA ; OF BRANCH AND RETURN 
F94S :4C DA FO 339 JMP PRBYTE 
F948: 340 • 
F948 :A2 03 341 PRBLNK LOX #$03 ;BLA?« COUNT 
F94A:A9 AO 342 PRBL2 LOA ISAO ;LOAD A SPACE 
F94C: 20 ED FD 343 PRBL3 JSR COUT ;OUTPUT A BLA.M< 
F94F:CA 344 DEX 
P950 :DO F8 F94A 345 BNE PR8L2 ; LOOP UNTIL COUNT•O 
F9S2 :60 346 RTS 
P9S3: 347 • 
F953 :38 348 PCADJ SEC ;0•1 BYTE, 1•2 BYTE, 
P954 :AS 2F 349 PCADJ2 LOA LENGTH ; 2•3 BYTE 
P956:A4 38 350 PCADJ3 LOY PCH 
F958:AA 3Sl TAX ; TEST DlSPLACEMENT SIGN 
F959:10 01 F95C 3S2 BPL PCADJ4 (FOR REL BRANCH) 
P95B:88 3S3 DEY ; EXTEND NEG BY DECR PCH 
F95C : 65 3A 354 PCADJ4 ADC PCL 
P95E:90 01 F961 35S BCC RTS2 ;PCL+LENGTH(OR DISPL)+l TO A 
F960 :CB 356 INY ; CARRY INTO Y (PCH) 
F961 60 357 RTS2 RTS 
F962 358 ; 
P962 359 ; FMTI BYTES: XXXXXXYO INSTRS 
P962 360 ; IF Y•O THEN LEFT HALP BYTE 
F962 361 : IF Y•l THEN RIGHT HALF BYTE 



c..> F962: 362 ; (X-INDEX) F996:0D 416 DFB $00 c..> 
0- F962: 363 ; F997 :80 417 DFB $80 

F962:04 364 FKTI DFB $04 F998: 04 418 DFB $04 
F963:20 365 DFB $20 F999:90 419 DFB $90 
F964 :54 366 DFB $54 F99A:OI 420 DFB $01 
F965 :30 367 DFB $30 F99B:22 421 DFB $22 
F966 :OD 368 DFB $00 F99C :44 422 DFB $44 
F967 :80 369 DFB $80 F99D:33 423 DFB $33 
F968 :04 370 DFB $04 F99E:OD 424 OFB $00 
F969 :90 371 OFB $90 F99F:80 425 DFB $80 
F96A:03 372 DFB $03 F9AO :04 426 DFB $04 
F968 :22 373 DFB $22 F9AI :90 427 OFB $90 
F96C:54 374 DFB $54 F9A2 :26 428 DFB $26 
F960 :33 375 DFB $33 F9A3 :31 429 DFB $31 
F96E :OD 376 DFB $OD F9A4 :87 430 DFB $87 
F96F:80 377 DFB $80 F9A5 :9A 431 DFB $9A 
F970 : 04 378 DFB $04 F9A6: 432 ; 
F971:90 379 DFB $90 F9A6 : 433 ; ZZXXXYOI INSTR'S 
F972 :04 380 DFB $04 F9A6: 434 ; 
F973:20 381 DFB $20 F9A6:00 435 FMT2 llFB $00 ;ERR 
F974:54 382 DFB $54 F9A7: 21 436 DFB $21 ;IMM 
F975:33 383 DFB $33 P9A8:81 437 DFB $81 ;Z-PAGE 
F976 : 0D 384 DPB $OD F9A9:82 438 DFB $82 ;ABS 
F977 :80 385 DFB $80 F9AA:OO 439 DFB $00 ;IMPLIED 
F978:04 386 DFB $04 F9AB:OO 440 DFB $00 ; ACCUMULATOR 
F979:90 387 DFB $90 F9AC:59 441 DFB $59 ;(ZPAG,X) 
F97 A:04 388 DFB $04 F9AD:4D 442 DFB $4D ;(ZPAG),Y 
F97B:20 389 DFB $20 F9AE:91 443 llFB $9 l ~ZPAG,X 

F97C: 54 390 DFB $54 F91\F:92 444 OFB $92 ;ABS,X 
F97D:38 391 OFB $38 F9B0:86 445 DFB $86 ;ABS,Y 
F97E:OD 392 OFB $00 F9BI :4A 446 OFB $4A ; (ABS) 
F97F :80 393 DFB $80 F982:85 447 DFB $85 ;ZPAG, Y 
F980 :04 394 OFB $04 F9B3 :90 448 DFll $9D ;RELATIVE 
F981 : 90 395 DFB $90 F9 84:AC 449 CHARI DFB $AC ;',' 
P982 :00 396 DFB $00 F9B5 :A9 450 DFB $A9 ;')' 
P983:22 397 DFB $22 F9B6:AC 451 OFB $AC ;',' 
F984 :44 398 OFB $44 F9B7 :A3 452 OFB $A3 ; ,,. 
P985: 33 399 OFB $33 ~'988 :AB 453 DFB SAS i'(' 

F986:0D 400 DFB $00 F9119 : A4 454 DFB $A4 ; '$' 
F987 :CB 401 DFB sea F9BA:09 455 CHAR2 DFB $09 ; 'Y' 
F988 :44 402 OFB $44 F988:00 456 DFB $00 
F989 :00 403 DFB $00 F9BC:D8 457 DFB $D8 'Y ' 
F9RA:ll 404 DFB $11 F98D: A4 458 DFB $A4 '$' 
F98B:22 405 DFB $22 F9BE:A4 459 DFB $A4 '$' 
F98C:44 406 DFB $44 F9BF:OO 460 DFB $00 
F98D:33 407 DFB $33 F9CO: lC 461 HNEHL DFB $1C 
F98E:OD 408 DFB $OD F9Cl :BA 462 OFB SBA 
F98F:C8 409 OFB $C8 F9C2: lC 463 DFB $IC 
F990:44 410 OFB $44 F9C3 :23 464 DFB $23 
F991 :A9 411 DFB $A9 F9C4 :50 465 OFB $50 
F992 :01 412 DFB $01 F9C5 :BB 466 DFB $88 
F993 :22 413 OPB $22 F9C6: IB 467 DFB $18 
P994 :44 414 DFB S44 F9C7 :Al 468 DFB $Al 
F995:33 415 OFB $33 F9C8 :90 469 OFB $90 



U> 
U> ...... 

F9C9:8A 
F9CA: ID 
F9CB:23 
F9CC : 9D 
F9CD:88 
F9CE: ID 
F9CF:Al 
F900 :00 
F9Dl: 29 
F9D2:19 
F9D3 : AE 
F9D4 :69 
F9DS :A8 
F906: 19 
F9D7:23 
F9D8:24 
F9D9: 53 
F9DA: 18 
F90B: 23 
F9DC:24 
F90D : 53 
F9DE: 19 
F9DF:Al 
F9EO:OO 
F9El : lA 
F9E2: 58 
F9E3 : 58 
F9E4:AS 
F9ES: 69 
F9E6: 24 
F9E7 :24 
F9E8:AE 
F9E9:AE 
F9EA:A8 
F9EB:AD 
F9EC: 29 
F9ED :00 
F9EE: 7C 
F9EF :00 
F9FO : 15 
F9Fl :9C 
F9F2 : 6D 
F9F3 :9C 
f9F4:AS 
F9F5:69 
F9F6 :2 9 
F9F7:53 
F9F8 :84 
F9F9: 13 
F9FA:34 
F9FB : l I 
F9FC:A5 
F9FD : 69 
F9FE: 23 

470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
5(10 
501 
502 
503 
504 
50S 
506 
507 
508 
509 
SlO 
511 
512 
513 
514 
SIS 
516 
517 
518 
Sl9 
520 
521 
522 
523 

DF8 $8A 
DFB $10 
DFB $23 
DF8 $90 
DF8 $88 
DF8 $10 
DF8 $Al 
DF8 $00 
DFB $29 
DFB $19 
OFB $AE 
DF8 $69 
DFB $A8 
llF8 $19 
DF8 $23 
DF8 $24 
DF8 $53 
DF8 $18 
DFB $23 
DF8 $24 
OFB $53 
OF8 $19 ; (A) FORMAT ABOVE 
OFB $Al 
01'8 soo 
DF8 $IA 
OF8 S58 
DFB SSS 
DFB $AS 
DF8 S69 
DFB $24 ; (8) FORMAT 
DFR $24 
OF8 SAE 
DF8 $AE 
DFB $A8 
OFB SAD 
DFB $29 
DFB $00 
DFB S7C ; (C) FORMAT 
OFB $00 
DF8 $15 
DFB $9C 
DF8 $6D 
DFB S9C 
DFB SA> 
DFB $69 
DFB $29 ; (0) FORMAT 
DF8 $53 
OFB $84 
DFB $13 
DFB $34 
DFR S 11 
DF8 $AS 
DFR $69 
DFB $23 ; (E) FORMAT 

F9FF:AO S24 DFB $AO 
FAOO: 08 S2S MNEMR DFB $08 
FA01:62 S26 DFB $62 
FA02: SA 527 DFB $SA 
FA03 :48 S28 DF8 $48 
FA04 :26 529 DF8 $26 
FAOS :62 530 DFB $62 
FA06:94 531 DF8 $94 
FA07 :88 532 DF8 $88 
FA08:54 533 DFB $54 
FA09:44 S.14 on $44 
FAOA:C8 535 DFB $C8 
FAOB: 54 536 DF8 $54 
FAOC:68 537 DF8 $68 
FAOD:44 538 DF8 $44 
FAOE:E8 539 llF8 $E8 
FAOF : 94 S40 DFB $94 
FAlO:OO S41 DFB $00 
FAll :84 S42 DFB $84 
FA12 :08 543 DF8 $08 
FA13:84 544 DFB $84 
FA14 : 74 S4S DF8 $74 
FAlS : 84 546 DFB $84 
FA16:28 547 DF8 $28 
FA! 7: 6E 548 DFB $6E 
FA18 : 74 S49 DFB $74 
FA! 9 : F4 550 DF8 $F4 
FAlA:CC SS! DF8 sec 
FA1B:4A 552 DFB $4A 
FA1C:72 SS3 DFB $72 
FA1D:F2 554 DFB $F2 
FA1E:A4 555 DF8 $A4 ; (A) FORMAT 
FA1F:8A 556 DFB $8A 
FA20 :00 557 OFB soo 
FA21 :AA 553 DFB $AA 
FA22: A2 S59 DFB $A2 
FA23: A2 560 DF8 SA2 
FA24:74 561 DFB $74 
FA25:74 562 DF8 $74 
FA26:74 S63 DF8 $74 ; (B) FORMAT 
FA27:72 S64 DFB S72 
FA28 :44 565 DFB S44 
FA29: 68 566 DFB $68 
FA2A: 82 

567 DFB $82 
FA28:32 568 DF8 $32 
FA2C: 82 569 DFB $82 
FA20:00 570 DFB $00 
FA2E:22 S7 l DFB $22 ; (C) FORMAT 
FA2F:OO 572 DFB $00 
FA30: lA 573 DFB $1A 
FA31 :!A 574 DFB $1A 
FA32: 26 575 DF8 $26 
FA33: 26 576 DFB $26 



~ FAJ4 :72 577 DFB $72 FA96 CD F3 03 631 CHP SOFTEV+I 
co PAJ5:72 578 DPB $72 FA99 DO 08 FAA3 632 BNE NOFIX YES SO REENTER SYSTEM 

FA36 :88 579 DPB $88 ; (D) FORMAT FA9B AO 03 633 FIXSEV LOY #3 NO SO POINT AT WARM START 
FAJ7 :CB 580 DFB $C8 FA9D 8C F2 03 634 STY SO!'TEV FOR NEXT RESET 
FAJ8:C4 581 DPB $C4 FAAO 4C 00 EO 63S JMP BASIC AND DO THE COLD START 
FAJ9:CA 582 DFB $CA FAA3 6C F2 03 636 NOFIX JHP ( SO!'TEV) SOFT ENTRY VECTOR 
FAJA:26 58J DFB $26 FAA6 637 ******"*********** 
Jl'AJB:4B 5B4 DFB $4B FAA6 20 60 FB 63B PWRUP JSR APPLE II 
FAJC:44 58S DPB $44 FAA9 FAA9 6J9 SETPG3 EQU . ; SET PAGE 3 VECTORS 
FA3D:44 586 DFB $44 FAA9 A2 05 640 LOX #5 
FAJE : A2 587 DFB $AZ ; (E) FORMAT FAAB BD FC FA 641 SETPLP LDA PWRCON-1,X ; WITH CNTRL 8 ADRS 
FAJF:C8 588 DFB $CB FAAE 90 EF 03 642 STA BRKV-1,X ; OP CURRENT BASIC 
PA40: 589 • FABI CA 643 l>EX 
PA40: CJPA 590 llEWIRQ EQU $C3FA ;nev IRQ entry FAB2 DO F7 FAAB 644 BNE SETPLP 
FA40: 591 • FAB4 A9 CB 645 LDA #$CB ; LOAD HI SLOT +I 
FA40: B5 45 592 OLDIRQ STA $4S ; ( !hould never be uaed) FAB6 B6 00 646 STX LOCO ; SETPG3 HUST RETURN X•O 
FA42:A5 4S S9J LDA $45 ;for those who save A to $45 FABB :BS 01 647 STA LOCI ; SET PTR H 
FA44 : 4C FA CJ 594 JHP llEWIRQ ;go to interrupt h1tndler FABA: 64B • 
PA47: 595 • FABA: 649 * Check 3 ID bytes inste&d of 4. Al l ows devices 
PA47 :80 06 CO 596 NEWBREAK STA SETSLOTCXROH ;force in slots FARA: 650 * other than Disk II's to be bootable. 
FA4A:85 45 597 STA ACC ; save accu11ulator FABA: 6Sl • 
FA4C: 598 • FABA:AO OS 652 SLOOP LOY #s iY is byte ptr 
FA4C :2B S99 BREAX PLP FABC:C6 01 653 DEC LOCI 
FA4D:20 4C FF 600 JSR SAVI : SAVE REG'S ON BREAK FABE AS 01 654 LDA LOCI 
FA50:68 601 PLA ; INCLUDING PO FACO C9 CO 65S CHP #$CO ; AT LAST SLO'r YET? 
FA51:85 JA 602 STA PCL FAC2 FO 07 FA9B 6S6 BEQ FIXSEV ; YES AND IT CAN ' T BE A DISK 
FA53:68 603 PLA FAC4 BO FB 07 657 STA HS LOT 
FA54 :B5 3B 604 STA Pell FAC7 Bl 00 6SB NXTBYT LOA (LOCO), Y ; FETCH A SLOT BYTE 
FA56: 6C FO OJ 60S JMP (BRKV) ;BRKV WRITTEN OVER BY DISK BOOT FAC9 09 01 FB 659 CHP DlSKlD-l 1 Y ; IS IT A DISK ?? 
FA59: 606 • FACC DO EC FABA 660 BNE SLOOP : NO, SO NEXT SLOT DOWN 
FA59: 20 82 PS 607 OLOBRK JSR INSDSI ;PRINT USER PC FACE BB 661 DEY 
FA5C :20 DA PA 60B JSR RGDSPl AND REGS FACF 8B 662 DEY ; YES, SO CHECK NEXT BYTE 
FASF:4C 65 FF 609 JMP HON ;GO TO HONITOR (NO PASS GO, NO $2001) FAOO 10 FS FAC7 663 BPL NXTBYT ; UNTIL 3 BYTES CHECKED 
FA62:D8 610 RESET CLO ; DO THIS FIRST THIS THIE FAD2 6C 00 00 664 JHP (LOCO) ; GO BOOT ••• 
FA63 :20 B4 FE 611 JSR SETNORM FADS 66S • 
FA66 : 20 2P FB 612 JSR INIT FADS EA 666 NOP 
FA69: 20 9J FE 613 JSR SETVlD FAD6 EA 667 NOP 
FA6C:20 89 PE 614 JSR SETKBD FAD7 66B • 
FA6F:AD S8 CO 615 INITAN LDA SETANO ANO • TTL LO PA07 20 BE FD 669 REGDSP JSR CROUT : DISPLAY USER REG CONTENTS 
FA72: AD SA CO 616 LOA SETANI ANI • TTL LO FADA A9 45 670 RGDSPI LOA #$45 ;WITH LABELS 
PA7S:AO 09 617 LOY 19 CODE•INIT/RRA0981 FADC B5 40 671 STA AJL 
FA77:20 84 PB 61B JSR GOTOCX DO APPLE2E INIT/RRA0981 FADE A9 00 672 LDA #$00 
FA7A:EA 619 NOP /RRA09Bl FAEO SS 41 673 STA AJH 
FA7B:AD FF CF 620 LOA CLRllOH TURN OFF EXTNSN ROH FAE2 A2 PB 674 LOX #$FB 
FA7E:2C 10 CO 621 BIT KBDSTRB CLEAR KEY BOARD FAE4 A9 AO 67S RDSPI LOA #$AO 
FABI :DB 622 llEWHON CLO FAE6 20 ED FD 676 JSR COUT 
FA82 :20 JA FF 62J JSR BELL CAUSES DELAY IF KEY BOUNCES FAE9 BO IE FA 677 LDA RTBL-251,X 
FABS:AD FJ 03 624 LOA SOFTEv+l IS RESET HI FAEC 20 ED FD 67B JSR COUT 
PA88:49 AS 625 EOR #$A5 A FUNNY COMPLEMENT OF THE FAEF A9 BD 679 LOA #$80 
PABA:CD F4 OJ 626 CHP PWREDUP PWR UP BYTE ??? FAFI 20 ED FD 6BO JSR COUT 
FABD:OO 17 FAA6 627 BNE PWRUP NO SO PWRUP FAF4 B5 4A 681 LOA ACC+S,X 
FA8F:AD FZ OJ 62B LDA SOFTEV YES SEE IF COLD START FAF6 20 DA FD 682 JSR PRBYTE 
FA92 : DO OP FAA3 629 BNE NO FIX HAS BEEN DONE YET? FAF9 EB 683 INX 
FA94:A9 EO 6JO LOA #$ EO DOES SOFT ENTRY VECTOR POINT AT BASIC? FAFA JO EB FAE4 6B4 BHI RDSPI 



U> 
U> 

'° 

FAFC 60 
FAFD 
FAFD 59 FA 
FAFF 00 EO 45 
FB02 20 FF 00 FF 
F806 03 FF 3C 
FB09 Cl FO FO EC 
FBI! : FBI! 
FBll:C4 C2 Cl 
FB14:FF Cl 
FB16:FF FF FF 
FB19 : 
FB19:Cl 08 09 
FBIG:DO 03 
FBIE:AD 70 CO 
FB21 : AO 00 
FB23: EA 
FB24: EA 
FB25: RD 64 CO 
FB28 : 10 04 FB2E 
FB2A:C8 
FB28 : DO F8 FB25 
FB2D:d8 
FR2E : 60 
FB2F : 
F82F : A9 00 
FB31 : 85 48 
FB33: AD 56 CO 
FB36 : AD 54 CO 
FB39:AD 51 CO 
FB3C : A9 00 
FB3E : FO OS FB48 
FB40 : AD 50 CO 
FB43: AD 53 CO 
FB46 : 20 36 F8 
FB49 :A9 14 
FB48:85 22 
FB4D : A9 00 
FB4F:85 20 
FB51 : AO OC 
F853:DO 5F F884 
FS55:A9 18 
FB57 :85 23 
FB59 : A9 17 
F858:85 25 
FB5D:4C 22 FC 
FB60: 
FB60: 20 58 FC 
FB63:AO 09 
FB65: 89 09 FF 
FB68: 99 OE 04 
F868:88 
FB6C:DO F7 F865 
FB6E:60 

685 RTS 
686 • 
687 PWRCON D!I 
688 DFB 
689 DISKID OFB 
690 DFB 
691 ASC 
692 XLTBL EQU 
693 DFB 
694 DFB 
695 DFB 
696 • 
697 RTBL DFB 
698 DFB 
699 PREAD LOA 
700 LOY 
70 1 NOP 
702 NOP 
703 PREAD2 LOA 
704 BPL 
705 !NY 
706 BNE 
707 DEY 
708 RTS2D RTS 

l • 

2 !NIT LOA 
3 STA 
4 LDA 
s LOA 
6 SETTXT LOA 
7 LOA 
8 SEQ 
9 SETGR LOA 

10 LOA 
11 JSR 
12 LOA 
13 SE'l"WND STA 
14 LOA 
15 STA 
16 LOY 
17 BNE 
18 LOA 
19 STA 
20 LOA 
21 TABV STA 
22 JHP 
23 • 
24 APPLEII JSR 
25 LOY 
26 STITLF. LOA 
27 STA 
28 DEY 
29 BNE 
30 RTS 

OLDRRK 
$00 ,$EO ,$45 
$20, $FF, SOO, $FF 
$03, $FF ,$3C 
'Apple ][' . 
$C4,$C2,$Cl 
$FF, $C3 
$FF,$FF,$FF 

SCI ,$08,$09 ;REGISTER NAMES FOR REGDSP: 
SDO ,$03 ; 'AXYPS' 
PTRIG ;TRIGGER PADDLES 
1$00 ; !NIT COUNT 

;COMPENSATE !'OR !ST COUNT 

PADDLO, X ;COUNT Y-REG EVERY 12 USEC. 
RTS2D 

PREAD2 ; EXIT AT 255 MAX 

1$00 ;CLR STATUS FOR DEBUG SOFTWARE 
STATUS 
LORES 
LOWSCR ; INIT '/IDEO MODE 
TXTSET ; SET FOR TEXT MODE 
#$00 ; FULL SCREEN WINDOW 
SETWND 
TXTCLR ; SET FOR GRAPHICS MODE 
HIXSET ; LOWER 4 LINES AS TEXT WINDOW 
CLRTOP 
#$14 
WNDTOP ; SET FOR 40 COL WINDOW 
#$00 i TOP IN A-REG• 
WNDLFT ; BOTTOM AT LINE $24 
1$C ;CODE•SE'.l\IND /RRA0981 
GOTOCX 
#$18 
WNDBTH 
# s11 ;VTAB TO ROW 23 
CV ; VTABS TO ROW IN A-REG 
VTAB 

HOME ;CLEAR THE SCRN 
#9 
TITLE-1,Y ;GET A CHAR 
LINEl+J4,Y ; PUT IT AT TOP CENTER OF SCREEN 

STITLE 

FB6F: 31 • 
FB6F: AD Fl 03 32 SETPWRC LDA SOFTEV+l ;ROUTINE TO CALCULATE THE 'FUNNY 
FB72 : 49 A5 33 EOR l$A5 ;COMPLEMENT' FOR THE RESET VECTOR 
FB74:8D F4 03 34 STA PWREDUP 
F877 :60 35 RTS 
FB78: 36 • 
FB78: FB78 37 VIDWAIT EQU . ;CHECK FOR A PAUSE (CONTROL-S) • 

FB78 : C9 8D 38 CHP #$80 ;ONLY WHEN I HAVE A CR 
FB7A : OO 18 FB94 39 BNE NOWAIT ;NOT SO, 00 REGULAR 

FB7C:AC 00 CO 40 LOY KBD ; IS KEY PRESSED? 
FB7F : IO 13 FB94 41 BPL NOWAIT ;NO. 
FB81 : CO 93 42 CPY #$93 ;YES -- IS IT CTRL-S? 
FB83 :DO OF FB94 43 BNE NOWAIT ; NOPE - IGNORE 
FB85:2C JO CO 44 BIT KBDSTRB ; CLEAR STROBE 
FB88 : AC 00 CO 45 KBDWA IT T.DY KBD ;WAIT TILL NEXT KEY TO RESUME 
F88B:IO FB F888 46 BPL KBDWAIT ;WAIT FOR KEYPRESS 
F88D : CO 83 47 CPY #$83 ; IS IT CONTROL-C ? 
FB8F : FO 03 F894 48 BEQ NOWAI'f ; YES, SO LEAVE IT 
F891 :2C 10 CO 49 BIT KBDSTRB ;CLR STROBE 

FB94 : 4C FD FB 50 NOWAIT JHP VIDOUT ; DO AS BEFORE 

FB97: 51 • 
FB97: 38 52 ESCOLD SEC ; INSURE CARRY SET 
FB98 : 4C 2C FC 53 JHP ESCl 
F898:A8 54 ESCNOW TAY ; USE Cl!AR AS INDEX 
F89C: 89 48 FA 55 LOA XLTBL-$C9, Y i TRANSLATE IJKM TO CBAD 
FB9F 20 97 FB 56 JSR ESCOLD ; DO THE CURSOR MOTION 
FBA2 20 21 FD 57 JSR ROE SC ;GET IJKM, ijkm, ARROWS/RRA0981 
FBA5 C9 CE 56 ESCNEW CHP fSCE ;IS THIS AN 'N'? 

FBA7 BO EE FB97 59 BCS ESCOLO ; 'N' OR GREATER - DO IT! 
FBA9 C9 C9 60 CHP f SC9 ;LESS THAN 1 I 1 ? 
FBAB 90 EA F897 61 BCC ESCOLD ;YES, SO 00 OLD WAY 
FBAD C9 CC 62 CHP #$CC ;IS IT AN 1 L 1 ? 
FBAF F0 E6 FB97 63 BEQ ESCOLD ;DO NORMAL 
FBBl DO ES F89B 64 BNE ESCNOW ;GO DO IT 
FB83 65 • 
F883 C006 66 SETSLOTCXROH EQU $C006 ;/RRA0981 
FBB3 C007 67 SETINTCXROH EQU $C007 ;/RRA0981 
FB83 C0 15 68 RDCXROH EQU $C015 ;/RRA0981 
FBB3 69 • /RRA0981 
FBB3 06 70 VERSION DFB $06 ; FOR IOCHECK/RRA0981 
FR84 71 • 
FBB4 FB84 72 GOTOCX EOU . ;/RRA0981 
F884 2C 15 CO 73 BIT RDCXROM ;GET CURRENT STATE/RRA0981 
FB87 08 74 PHP ; SAVE ROMBANK STATE/RRA0981 
FBB8 80 07 CO 75 STA SETI NTCXROH ; SET ROHS ON/ RRA0981 
FBBB 4C 00 Cl 76 JHP ClORG ;=>OFF TO CXSPACE/RRA0981 
FBBE 77 • 
FBBE 00 78 OFB 
FBBF 00 79 DFB 0 
FBCO 80 • 
FBCO EO 81 ZIDBYTE OFB $EO ;/ /e ROH rev ID byte 
FBCI 82 • 
FBCl 48 83 BASCALC PHA ;CALC BASE ADDR IN BASL,H 
FBC2 4A 84 LSR A ;FOR GIVEN LINE NO. 



~ 
0 

PBC3:29 03 
FBC5 :09 04 
PBC7:85 29 
FBC9:68 
PBCA:29 18 
FBCC: 90 02 F800 
FacE :69 7P 
FBD0:85 28 
FBD2 :OA 
FBD3:0A 
FBD4 :05 28 
FBD6:85 28 
FBD8:60 
FBD9: 
FBD9 :C9 87 
FBDB:OO 12 FBEF 
FBDD:A9 40 
FBDF:20 A8 FC 
FBE2 :AO CO 
FBE4 :A9 0C 
PBF.6:20 A8 PC 
FBE9: AD 30 CO 
FBEC:BB 
FBEO : OO F5 PBE4 
FBEF:60 
FBFO: 
FBFO: A4 24 
PBF2:91 2B 
FRF4 : E6 24 
FBF6:A5 24 
FBFB:C5 21 
FBFA : BO 66 FC62 
FBFC:60 
FBFD: 
FBFO:C9 AO 
FBFF: 80 EF FBFO 
FCOl:AB 
FC02 '10 EC FBFO 
FC04 :C9 BD 
FC06: FO 5A FC62 
FCOB :C9 8A 
FCOA: F0 5A FC66 
FCOC:C9 B8 
FCOE : DO C9 FBD9 
FCIO:C6 24 
FC12 : 10 EB PBFC 
FC14 :A5 21 
FC16:B5 24 
FC18:C6 24 
FCIA:A5 22 
FCIC:C5 25 
FCIE : BO DC FBFC 
FC20 :C6 25 
FC22: 

85 
B6 
87 
88 
89 
90 
91 
92 BASCLC2 
93 
94 
95 
96 
97 
98 • 
99 BELLI 

100 
101 
102 
103 
104 BELL2 
105 
106 
107 
108 

AND #$03 
ORA #$04 
STA BASH 
PLA 
AND #$18 
8CC BASCLC2 
ADC #$7P 
STA BASL 
ASL A 
A.SL A 
ORA RASL 
STA BASL 
RTS 

CHP #$87 
BNE RTS2B 
LOA #$40 
JSR WAIT 
LDY #$CO 
LDA #$0C 
JSR WAIT 
LDA SPKR 
DEY 
BNE BELL2 

109 RTS2B RTS 
110 • 
l 11 STORADV LDY CH 
112 STA (BASL),Y 
113 ADVANCE INC CH 
ll4 LDA CH 
115 CHP WNDWDTH 
116 BCS CR 
117 RTS3 RTS 
llB • 
11 9 VTDOUT 
120 
121 
122 
123 
124 
125 
126 
127 
l2B 
129 BS 
130 
131 
132 
133 
134 UP 
1.)5 
136 
137 
138 .. 

CMP #$AO 
acs STORADV 
TAY 
BPL STORADV 
CHP #$80 
BEQ CR 
CHP #SBA 
BEQ LF 
CHP #$88 
BNE BELLl 
DEC CH 
BPL RTS3 
LDA WNDWDTH 
STA CH 
DEC CH 
LDA WNDTOP 
CHP CV 
BCS RTS3 
DEC CV 

; O(•LINE N0,(•$17 
; ARC • OOOABCDE, GENERATE 
; BASK • OOOOOICD 

; AND 
; BASL • EABABOOO 

BELL CHAR? (CONTROL-G) 
NO, RETIJRN. 
YES ••• 

DELAY .Ol SECONDS 

; TOGGLE SPEAKER AT l KHZ 
; FOR .1 SEC. 

;CURSOR H INDEX TO Y-REG 
iSTORE CHAR IN LINE 
; INCREH.ENT CURSOR H INDEX 
; (MOVE RIGHT) 
;BF.YOND WINDOW WIDTH? 
; YES, CR TO NEXT LINE. 
; NO, RETURN. 

;CONTROL CHAR? 
; NO, OUTPUT IT. 
; INVERSE V lDEO? 
; YES, OUTPUT IT. 
;CR? 
; YES. 
;LINE FEED? 
; IF SO, DO IT. 
;BACK SPACE? (CONTROL-ff) 
; NO, CHECK FOR BELL. 
; DECREMENT CURSOR H INDEX 
; IF POSITIVE, OK; ELSE MOVE: UP. 
;SET CH TO WINDOW lolDTH - l. 

;(RIGHTMOST SCREEN POS) 
; CURSOR V INDEX 

; IF TOP LINE THEN RETIJR~ 

; DECR CURSOR V INDEX 

PC22 : A5 25 
PC24 :85 28 
FC26:98 
FC27:AO 04 
PC29 : DO 89 FB84 
PC2B: 
FC2B : EA 
PC2C: 
FC2C:49 CO 
FC2E:FO 28 FC58 
FC30:69 FD 
FC32: 90 CO FBF4 
FC34: FO DA FCIO 
FC36 :69 FD 
FC38: 90 2C FC66 
FC3A:FO DE FClA 
FC3C:69 FD 
PC3E:90 5C FC9C 
FC40:DO BA FBFC 
PC42: 
FC42: FC42 
FC42 :AO OA 
FC44:00 E3 FC29 
PC46: 
FC46:2C lF CO 
FC49:10 04 FC4F 
FC4B : AO 00 
FC4D:F0 OB FC5A 
FC4F:98 
FC50 :48 
FC5l:20 78 FB 
FC54 : 68 
FC55: A4 35 
FC57 : 60 
PC58: 
FC58: FC58 
FC58:AO 05 
FC5A:4C B4 FR 
FC5D: 
FC5D:EA 
FC5E: EA 
FC5F: EA 
FC60:EA 
FC6l:EA 
FC62: 
FC62 : A9 00 
FC64 :85 24 
FC66:E6 25 
FC68: A5 25 
FC6A:C5 23 
FC6C:90 86 FC24 
FC6£:C6 21 
FC70: 
FC70: FC70 

139 VTAB 
140 VTABZ 
141 
142 
143 GOTOCXI 
144 • 
145 
146 * 
147 ESCl 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 • 

LOA CV 
STA BASL 
TYA 
LOY #$4 
BNE GOTOCX 

NOP 

EOR #$CO 
BEQ HOKE 
ADC #$FD 
BCC ADVANCE 
BEQ BS 
ADC #$FD 
ace Lr 
BEQ UP 
ADC #$FD 
ace CLREOL 
BNE RTS3 

l 59 CLREOP EQU • 
l 60 LOY #$A 
161 
162 • 

BNE GOTOCXI 

163 NEWVW BIT R080VID 
l 64 BPL NEWVWl 
165 LOY #$0 
l 66 BEO GOTOCX3 
167 NEWVWI TYA 
168 PHA 
169 
l 70 
171 
172 
173 • 

JSR VlDWAIT 
PLA 
LOY YSAVl 
RTS 

174 HOlfE EQU • 
175 LOY #5 
I 7 6 GO'£OC•3 JHP GOTOCX 
177 * 
178 
l 79 
180 
181 
la2 
183 • 
184 CR 
185 
186 LF 
187 
188 
189 
l 90 
191 * 

NOP 
NOP 
NOP 
NOP 
NOP 

LDA #$00 
STA CH 
INC CV 
LOA CV 
CHP WNDBTH 
BCC VTABZ 
DEC CV 

192 SCROLL EQU * 

;GET CURSOR V INDEX 
; teaporarily save Al:.c 

;and Y 
i thh h VTABZ call 
;•> always perfor• call 

ESC '@'? 
IF SO DO HOME AND CLEAR 

ESC-A OR B CHECK 
A, ADVANCE 
8, BACKSPACE 

ESC-C OR D CHECK 
C, DOWN 
D, GO UP 

ESC-E OR F CKECK 
E, CLEAR TO END OF LINE 
ELSE NOT F, RE'nJRN 

;/RRA098l 
; CODE-CLREOP /RRA09 81 
;DO 40/80 /RRA098l 

tn 80 colu11ns? 
•)not 80 coluans 
Print a character 
through video firnware 
get masked character 
and set up for vidwa it 
print the character 
restore Ace 
and Y 

;/RRA0981 
; COOE•HOHE/RRA098l 

;do 40/80 

:CURSOR TO LEFT OF INDEX 
; ( RET CURSOR H•O) 
; INCR CURSOR V. (DOWN l LINE) 

;OFF SCREEN? 
; NO, SET BASE ADDR 
;DECR CURSOR V. (BACK TO BOTTOM) 

;/RRA0981 



c..> 
.c.. ...... 

PC70:AiJ 06 193 LDY 16 ;CODE•SCROLL/RRA098l 
;DO 40/80 /RRA098! PC72: DO BS FC29 194 BNE GOTOCXI 

FC74: 195 * 
PC74 
FC74: 
PC74: 
FC74:8D 06 CO 
PC77: 6C FE 03 
PC7A: 
PC7A: 
FC7A: 
PC7A: 
FC7A:68 
PC7B: 8D F8 07 
FC7E:C9 Cl 
PC80: 90 OD FC8F 
FC82 :8D FF CF 
PC8S:MJ 00 
FC87 :A6 01 
FC89:8S 01 
FC8B:Bl 00 
FC8D:86 01 
PC8P: 8D 07 CO 
FC92 : 4C 7C C4 
PC9S: 
PC9S:90 02 FC99 
PC97 :2S 32 
PC99 :4C F7 FD 
FC9C: 
PC9C: 
PC9C: 
FC9C: 
PC9C: 
FC9C: 
FC9C:38 
FC9D:90 
PC9E:l8 
PC9F:84 2A 
FCAI :AO 07 

0000 

FCA3:BO 78 FDlD 
FCA5 :CS 
FCA6:00 7S FDID 
PCA8: 
FCA8:38 
FCA9:48 
FCAA : E9 01 
FCAC : DO FC FCAA 
FCAE:68 
FCAF:E9 01 
PCB! : DO F6 FCA9 
FCB3:60 
FCB4: 
FCB4:E6 42 
FCB6:00 02 FCBA 

196 • Jump here to swap out ROHs 
197 * for interrupt handlers in peripheral cards 
198 * 
199 !ROUSER STA SETSLOTCXROM ;switch in slots 
200 JMP ($3FE) ;and jump to user 
201 * 
202 * IRQDONE ($C3F4) jumps here after interrupt 
203 • because this cannot be done from SCnOO space 
204 • 
20S IRQDONE2 PLA 
206 STA MSLOT 
207 CMP #$Cl 
208 BCC IRONOSLT 
209 STA $CFFF 
210 LDY #0 
211 LDX $1 
212 STA $1 

; Fix $C800 space 
; restore HSLOT 
;valid Cn? 

; Deselect all $C800 

213 LDA ($0),Y ;do $Cn00 reference 
214 STX $1 ; fix zp location 
21S IRQNOSLT STA SF.TINTCXROM 
216 JMP IRQFIX jand restore the machine state 
217 * 
218 DOCOUTl BCC DOCOUT2 don't mask controh 
219 AND INVFLG apply inverse mask 
220 DOCOUT2 JMP COUTZI go back to COOT! 
221 • 
222 DS F80RG-+$4 9C-*, 0 ; pad to cl reol 
223 * 
224 * Note: bytes CLREOL and CLREOLZ ( $38 and 
225 * are used by slot test at $FBB7 . 
226 * 
227 CLREOL SEC 
228 DFB $90 
229 CLREOl..Z CLC 
230 
231 
232 
233 
234 
23S * 

STY 
LDY 
BCS 
INY 
BNE 

BAS2L 
#7 
GOTOCX2 

GOTOCX2 

;say it is EOL 
; 'BCC' opcode 
;say .lt ts EOL?. 
; save Y in temp 
;code•CLREOL 
;do it 
; code 8•CLREOLZ 

$18) 

236 WAIT 
237 WAITZ 
238 WAIT3 
239 

SEC 
PHA 
SBC 
BNE 
PLA 
SBC 
BNE 
RTS 

;enter with count in A 
;delay is: 

240 
241 
242 
243 
244 * 
24S NXTA4 
246 

1$01 
WAIT3 

#$01 
WAITZ 

INC A4L 
BNE NXTAI 

; 13+11 *A+5*A*A cycles 
;@ 1.023 usec per cycle 

; INCR 2-BYTE A4 
; AND Al 

FCB8 E6 43 
FCBA A5 JC 
FCBC CS 3E 
FCBE A5 3D 
FCCO ES 3F 

247 
248 NXTAI 
249 
2SO 
251 
2S2 

lNCR 2-BYTE Al. 
AND COMPARE TO A2 
(CARRY SET lF )•) 

FCC2 E6 3C 
FCC4 DO 02 
PCC6 E6 3D 

FCC8 2S3 

INC A4H 
LDA AIL 
CMP A2L 
LDA AIH 
SBC A2H 
INC AIL 
BNE RTS4B 
INC Al H 
RTS FCC8 60 

FCC9 
FCC9 8D 07 CO 
FCCC 20 67 CS 
FCCF 4C CS FE 
FCD2 
FCD2 
FCD2 
FCD2 
FCD2 
PCD2 
FCD2 : 8D 06 CO 
FCDS : 20 4A F9 
FCD8 : A9 DE 
FCDA : 20 EO FD 
FCDD : 20 3A FF 
FCEO: 4C FO FC 
FCE3 : 
FCE3 :80 06 CO 
FCE6 : 20 DO F8 
FCE9 :20 S3 P~ 
FCEC :84 38 
FCEE : 85 3A 
FCFO: 
FCFO: 
FCFO: 
FCFO: 
FCF0 : A9 Al 
FCF2 :SS 33 
FCF4: 20 67 FD 
FCF7 : 8D 07 CO 
FCFA :4C 9C CF 
FCFD: 
FCFD: B9 00 02 
FDOO:C8 
FDOl : C9 El 
FD03:90 06 FDOB 
FOOS :C9 F8 
FD07: BO 02 FDOB 
FD09:29 DF 
FDOB : 60 
FOOC 
FOOC AO OB 
FDOE DO 03 FD13 
FDIC 4C 18 FD 
FD13 20 84 FB 

254 
2S5 RTS4B 
2S6 * 
257 HEADR 
2S8 
2S9 
260 • 

STA SETINTCXROM ;force internal ROM 
JSR XHEADER ;write header 
JMP RETCXl jforce slou and return 

261 * For the ctisassP.mbler to be able to do 1/0 t o slots, 
262 * it cannot make calls to the 1/0 routines with the 
263 * internal ROH switched in. This stuff "witchee the 
264 * ROH out for such instances . 
26S * 
266 ERR3 
267 
268 
269 
270 
271 
272 • 

273 DISLIN 
274 
275 
276 
277 
278 • 

STA SF.TSLOTCXROH ;force slot ROM 
JSR PRBL2 ; tab to the error 
LOA #$DE ; to print a c.:i.ret ....... 
JSR COUT ;print it 
JSR BELL ; and beep 
JMP GETINSTl ;and go get next instruction 

STA SETSLOTCXROM ; force slot ROM 
JSR INSTDSP ;dis11sse11.ble the instruction 
JSR PCADJ ;calculAte new PC 
STY PCH ; and update PC 
STA PCL 

279 * NOTE: The entry point GETINSTl is hard-coded in 
280 * BFUNC of the Video firmware. 
281 * 
282 GETINSTl LOA f$Al ;get mini-prompt "!" 
283 STA PROMPT 

284 JSR GETLNZ ;go get a 1 ine of input 
285 STA Sf.TINTCXROM i force internal ROH 
286 JHP DOINST ;and return to CX apace 
287 • 
288 UPHON 
289 
290 
291 
292 
293 
294 
29S UPMON2 
296 * 
297 RDKEY 
298 
299 FDIO 
300 RDKEYO 

LOA IN, Y 
!NY 
CMP #$El 
BCC UPMON2 
CMP #$PB 
BCS UPMON2 
AND l$DF 
RTS 

LDY #$B 
BNE RDKEYO 
JMP RDKEYI 
JSR GOTOCX 

;get c haracter 
;point to next char 

;is it lowercase? 
;•>nope 
i lowercase? 
;•>nope 
;else upshift 

; code• RDKEY 
;allow $FD10 entry 
;if enter here, do nothing 
;dhplay cursor 



(..> FD! 6 EA 101 NOP FD6A A5 ll 154 GETLN LDA PROMPT ;OUTPUT PROMPT CHAR 
~ FD! 7 EA 102 NOP FD6C 20 ED FD 155 JSR COUT I\) 

FD18 6C 18 00 lOl RDKEYl .!>IP (KSWL) ;GO TO USER KEY-IN FD6F A2 0 1 156 LnX ~$01 ; INIT INPUT INDEX 
FDlB 104 • FD71 8A lS7 BCKSPC TXA 
FDIB FDlB 105 KEYIN EOU * FD7 2 FD Fl FD67 158 BEQ GETLNZ ;WILL BACKSPACE TO 0 
FDlB AO Ol 106 LDY # l ; RDKEY /RRA098 l FD74 CA lS9 DEX 
FDlD 4C 84 FB 107 GOTOCX2 JMP GOTOCX ;/RRA0981 FD75 20 J5 FD J60 NXTCHAR JSR RDCHAR 
FD20 EA 108 NOP ; /RRA09Bl FD78 C9 9S J61 CMP #$9S USE SCREEN CHAR 
FD21 J09 * .-07A 00 08 FDB4 J62 BNE ADDINP FOR CONTROL-U 
FD21 FD21 110 RDESC EQU * FD7C Bl 28 J6l LOA ( BASL), Y do 40 column pick 
FD21 20 OC FD Jl l J SR RD KEY ;GET A KEY FD7E 2C 1 F CO J64 BIT RDBOVlD 80 columns? 
FD24 AO 01 112 LOY II ;CODE•FIXIT FD8! JD BA FDJD J 6S BMI PICKFIX •>yes, fix it 
FD26 DO F5 FDlD llJ BNE GOTOCX2 ;•>always FDBJ EA J66 NOP 
FD28: Jl4 * FD84 90 00 02 J67 ADOINP STA IN , X ;ADD TO INPUT BUFFER 
FD28 : 315 * Flag to the video firTllWare that escapes are allowed . FD87 C9 80 J68 CMP #$80 
FD28 : 316 * This routine is called by RDCHAR which is called by FD89 00 BC FD47 J69 BNE NOTCR 
FD28: 317 * GETLN. The high bit of MSLOT i.s s et by all cards FD8B 20 9C FC J70 JSR CLREOL ;CLR TO EOL IF CR 
FD2B: 318 • that use the C800 space. FD8E A9 80 J7 l CROUT LOA ff$BD 
FD28: ll 9 • FD90 DO SB FDED J72 BNE COUT ;(ALWAY S ) 
FD28:4E FB 07 120 NEWRDKEY LSR MSLOT ; <128 means e scape ;illowed FD92 373 * 
FD2B:4C 0C FD J21 JMP RDKEY ;now read the key FD9 2 A4 JD 374 PRAl LOY AIR :PRINT CR,Al IN HEX 
FD2E:EA 122 NOP FD94 A6 JC J75 LOX AIL 
FD2F : J2J • FD96 20 BE FD J 76 PRYX2 JSR CROUT 
FD2F:20 2 1 FD J 2 4 ESC JSR RDESC ;/RRA0981 FD99 20 40 F9 177 JSR PRNTYX 
FDJ 2 : 20 AS FB J25 JSR ESCNEW ; HANDLE ESC FUNCTION. FD9C AO 00 J7B LDY 1$00 
FDJS :20 2B FD 126 RDCHAR JSR NEWRDKEY ; Flag RDCHAR Bnd read key FD9E: A9 AD J79 LOA #$AD ;PRINT 
FDJ8 :C9 98 127 CMP # $9B ; ' ESC'? FDAO :4C ED FD J80 JMP COlIT 
FDJA : FO Fl FD2F l2B BEO ESC ; YES, DON'T RETURN. FDA3: 381 * 
FDJC:60 J29 RTS FDAJ: AS JC J82 XAMB LDA AIL 
FDJD : 330 * FDA5:09 07 J8J ORA #$07 ;SET TO FINISH AT 
FDJD : AO OF lJ l PICKFIX LOY #SF ;code '"' fixpick FDA7 : B5 JE J84 STA A2L ; MOD 8•7 
FDJF:20 84 FB JJ2 JSR GOTOCX ;do 80 column pick FDA9: AS JD JB5 LOA AIU 
FD42 : A4 24 J33 LOY CH ;restore Y FDAB:8S JF J86 STA A2H 
FD44: 9D 00 02 JJ4 STA IN,X ;and save new char ac t er FDAD:AS 3C JB7 MO 
'F047: 33-') *U03 AUTOST2 Auto-Start Monitor ROH 27-AUG-84 PAGE 20 D8CllK LOA AIL 

FDAF:29 07 J88 AND 1$07 
FD4 7 : 20 ED FD JJ6 NOTCR JSR COUT ;echo typed char FDBl :00 OJ FDB6 lB9 BNE DATAOUT 
FD4A :EA 337 NOP FDBJ: 20 92 FD J90 XAM JSR PRAl 
FD4B:EA JJB NOP FDB6 : A9 AO J91 DATAOUT LDA #$AO 
FD4C:EA lJ9 NOP FDB8: 20 ED FD J92 JSR COUT ; OUTPUT BLANK 
FD4D : BD 00 02 J40 LOA IN,X FDBB: Bl JC J9J LDA (A I L),Y 
FDSO:C9 88 J4 1 CMP #$88 jCHECK FOR EDIT KEYS FDBD :20 DA FD 394 JSR PRBYTE ; OUTPlIT BYTE IN HEX 
FD52:FO ID FD71 J42 BEQ BCKSPC - BACKSPACE FDCO: 20 BA FC J95 JSR NXTA I 
FDS4 :C9 98 l4J CMP #$9B FDCl: 90 EB FDAD J96 BCC MODBCHK ; NOT DONE YET, GO CHECK MOD B 
FDS6: FO DA FD62 144 BEQ CANCEL ; - CONTROL- X FDC5 :60 J97 RTS4C RTS ;DONE. 
FOSS: ED 1"8 J4S CPX # $F8 FDC6: 398 * 
FD5A:90 OJ FDSF 346 BCC NOTCRl ;MARGIN? FDC6 :4 A J 9 9 XAMPM LSR A ;DETERMINE IF MONITOR MODE IS 
FDSC:20 lA FF 147 JSR BELL ; YES, SOUND BELL FDC7 : 90 EA FDBJ 400 BCC XAM ; EXAMINE, ADD OR SUBTRACT 
FD5F:E8 l4B NOTCRI INX ; ADVANCE INPUT INDEX FDC9:4A 401 Li:;R A 
FD60 : 00 IJ FD7S J49 BNE NXTCRAR FDCA:4A 402 LSR A 
FD62: 150 * FDCB : A5 JE 401 LOA A2L 
FD62:A9 DC J5 1 CANCEL LOA #$DC ; BACKSLASH AFTER CANCELLED LINE FDCD:90 02 FDD I 404 BCC ADD 
FD64 :20 ED FD lS2 JSR COUT FDCF :49 FF 405 EOR ffSFF ;FORM 2'S COMPLEMENT FOR SUBTRACT . 

FD67 : 20 BE FD JSJ GETLNZ JSR CROUT ;OUTPUT 'CR 1 FDDl : 65 JC 406 ADD ADC AIL 



FDD3:48 407 PHA FE28:CA 461 DEX 
PDD4:A9 BD 408 LDA #$BD ;PRINT '•', THEN RESULT PE29: 10 P7 FE22 462 BPL LT2 
FDD6:20 ED FD 409 JSR COUT PE2B:60 463 RTS 
PDD9:68 410 PLA FE2C: 464 • 
FDDA:48 411 PRBYTE PHA ; PRINT BYTE AS 2 HEX DIGITS FE2C:Bl JC 465 MOVE LDA (AlL),Y ;MOVE (Al) TIIRU (A2) TO (A4) 
FDDB:4A 412 LSR A ; (DESTROYS A-REG) FE2E:91 42 466 STA (A4L), Y 
PDDC:4A 413 LSR A FE30: 20 B4 PC 467 JSR l'XTA4 
PDDD:4A 414 LSR A FE33:90 P7 FE2C 468 BCC MOVE 
FDDE:4A 415 LSR A FE35 :60 469 RTS 
PDDF: 20 E5 FD 416 JSR PRHEXZ FE36: 470 • 
PllE2: 68 417 PLA PE36: Bl 3C 471 VP'i LOA (AlL),Y ;VERIP'i (Al) THRU (A2) 
POE3:29 OP 418 PRHEX AND #$OP ;PRINT HEX DIGIT IN A-REG PE38:Dl 42 472 CHP (A4L),Y ; WITH (A4) 
FDE5:09 BO 419 PRHEXZ ORA #$BO ; LS BITS ONLY, FE]A:PO IC FE58 473 BEQ VFYOK 
FDE7:C9 BA 420 CHP #$BA PE3C: 20 92 FD 474 JSR PRAI 
FDE9:90 02 FDED 421 BCC COUT PE3P:Bl JC 475 LDA (AIL),Y 
POEB:69 06 422 ADC #$06 FE41 :20 DA PD 476 JSR PRBYTE 
FDED: 423 • PE44:A9 AO 477 LDA #$AO 
PDED:6C 36 00 424 COUT JHP (CSWL) ;VECTOR TO USER OUTPUT ROUTINE FE46:20 ED FD 478 JSR COUT 
FDFO: 425 • PE49 :A9 A8 479 LDA #$A8 
FDP0:48 426 COUTl PHA ;save original cha.rRcter FE4B:20 ED FD 480 JSR COUT 
FDFl:C9 AO 427 CMP #$AO ;is it a control? FE4E:Bl 42 481 LOA (A4L),Y 
FDF3:4C 95 FC 428 JHP OOCOUTI ;•>mask if not; return to COUTZl FE50:20 DA FD 482 JSR PR BYTE 
FDF6: 429 • FE53:A9 A9 483 LDA 1$A9 
FDF6:48 430 COUTZ PHA ;save original character PE5 5 :20 ED FD 484 JSR COUT 
FDF7:84 35 431 COUTZI STY YSAVI ;save Y FE58:20 84 FC 485 VFYOK JSR NXTA4 
FDF9:A8 432 TAY ;save masked character PE5B:90 09 FE36 486 BCC VFY 
FDFA:68 433 PLA ;get original char FE5D:60 487 RTS 
FDFB:4C 46 PC 434 J'4P NEWVW ;new entry to vidwait FE5E: 488 • 
FDPE:EA 435 NOP FE5E:20 75 FE 489 LIST JSR Al PC ;MOVE Al (2 BYTES) TO 
FDFP:EA 436 NOP FE6l:A9 14 490 LOA #$14 ; PC IF SPEC'D AND 
FEOO: 437 • FE63:48 491 LIST2 PHA ; DISASSEMBLE 20 INSTRUCTIONS. 
FEOO:C6 34 438 BL! OEC YSAV FE64:20 00 F8 492 JSR INSTDSP 
PED2:FO 9F FDA] 439 BEQ XAMB FE6 7 :20 53 F9 493 JSR PC ADJ ;ADJUST PC AFTER EACH INSTRUCTION. 
FE04:CA 440 BLANK DEX ; BLANK TO HON PE6A:85 3A 494 STA PCL 
FE05:00 16 FEID 441 BNE SETMDZ ; AFTER BLANK FE6C:84 3B 495 STY FCK 
FE07:C9 BA 442 CHP #$BA ; DATA STORE HOOE? FE6E:68 496 PLA 
FE09:00 BB FDC6 443 BNE XAMPH i NO; XAM, ADD, OR SUBTRACT. FE6F:38 497 SEC 
FF.OB:85 31 444 STOR STA MODE ;KEEP IN STORE MODE FE70:E9 01 498 SBC #$01 ; NEXT OF 20· INSTRUCTIONS 
FEOD:A5 3E 445 LOA A2L FE72:00 EF FE63 499 BNE LIST2 
PF..OP:91 40 446 STA (AJL),Y ;STORE AS LOW BYTE AT (Al) PE74 :60 500 RTS 
FE! l :E6 40 447 INC A3L FE75: 501 * 
FE! 3: DO 02 PEI 7 448 BNE RTS5 ; INCR Al, RETURN. FE75:8A 502 AIPC TXA ;IF USER SPECIFIED AN ADDRESS, 
FE15:E6 41 449 INC A3H FE76:FO 07 FE7F 503 BEQ AlPCRTS ; COPY IT FROM Al TO PC. 
FF.17:60 450 RTS5 RTS PE78:85 JC 504 AIPCLP LOA AIL,X iYEP, SO COPY IT. 
FEl8: 451 * FE7A:95 3A 505 STA FCL,X 
FEl8:A4 34 4 52 SE THODE LOY YSAV ;SAVE CONVERTED t: ' I '+'' FE7C:CA 506 DEX 
FEIA: 89 FF 0 l 453 LOA IN-1 ,Y . ,_, . '.I AS MODE FE7D:l0 F9 FE78 507 BPL Al PC LP 
FE! D: 85 31 454 SETHDZ STA MODE PE7F:60 508 Al PGRTS RTS 
FE1F:60 455 RTS FE80: 509 • 
FE20: 456 • FE80:A0 3F 510 SETlNV LOY #$3F : SET FOR INVERSE VID 
FE20:A2 01 457 LT LOX #$01 FE82 :DO 02 FE86 511 BNE SETIFLG ; VIA COUTl 
FE22: 85 3E 458 LT2 LDA A2L,X ;COPY A2 (2 BYTES) TO PE84:AO FF 512 SETNORH LOY #$FF ; SET FOR NORMAL V ID 
PE24: 95 42 459 STA A4L,X ; A4 AND A5 FE86:84 32 S 13 SETIFLG STY INVFLG 
FE26:95 44 460 STA A5L,X FF.88:60 514 RTS 

e 



~ 
J:>,. 

FE89 : 
PE89:A9 00 
PEBB :85 JE 
FE8D:A2 38 
FE8P:AO 18 
FE91 : DO 08 FE9B 
FE9J : 
FE93:A9 00 
FE95 : 85 JE 
FE97:A2 J6 
FE99:A0 FO 
FE9B:A5 3E 
FE9D:29 OP 
FE9P: FO 04 FEA5 
PEAi :09 CO 
FEAJ :AO 00 
FEA5 : 94 00 
FEA/:9501 
FEA9:AO OE 
FEAB:4C B4 PB 
FEAE: 
FEAE:EA 
FEAF:OO 
FEBO : 
FEBO: 4C 00 EO 
FEBJ:4C OJ EO 
FEB6 : 20 75 FE 
FEB9: 20 JF PF 
FEBC:6C JA 00 
FEBF:~C 07 FA 
FEC2:60 
FECJ:EA 
FEC4 :60 
FECS: 
FECS: 
FEC5: 
PEC5: 
FEC5 : 
PECS : 
FECS :8D 06 CO 
FEC8:60 
PEC9:EA 
FECA: 
FECA: 4C PB OJ 
FECD: 
PECD:A9 40 
FECF: 8D 07 CO 
FED2 :20 AA CS 
FEDS : FO 2C FF03 
FE07: 
FEDI i 
FEDI: 
FEDI: 
FED7: 

51S * 
516 SETKBD 
517 INPOllT 
518 INPRT 
519 
520 
521 • 

LDA #$00 
STA A2L 
LOX IKSWL 
LOY fXEYlN 
BNE IOPRT 

; DO 'INIO' 
;DO 'INIAREG' 

S22 SETVID LDA #$00 ; DO 'PRIO ' 
523 OUTPORT STA A2L ;DO 'PR#AREG' 
S24 OUTPRT LOX ICSWL 
S25 LOY fCOUTI 
S26 IOPRT LOA A2L ;SET INPUT/OUTPUT VECTORS 
527 AND #$OF 
52 R BEQ IOPRTI 
529 ORA l(IOADR 
SJO LOY 1$00 
531 IOPRTl STY LOCO,X :save low byte of hook 
532 STA LOCI , X ; save ace 
S33 LDY f$ E ;code•PRl/INI 
534 GOTOCX4 JMP GOTOCX ;pedon:t call 
5JS • 
5J6 NOP 
537 CKSUMFIX DFB 0 ;/RRA0981 
538 * ;--)CORREC'f CKSUM AT CREATE TIKE. 
5J9 XBAS!C JMP BASIC ;TO BASIC, COLD START 
540 BASCONT JHP BASIC2 ;TO BASIC, WARM START 
S41 GO JSR AIPC ;ADOR TO PC IF SPECIFIED 
542 JSR RESTORE ;RESTORE PAXE REGISTERS 
543 JHP ( PCL) ;AND GOI 
544 REGZ JMP REGDSP ;GO DISPLAY REGISTERS 
54S TRACE RTS ;TRACE IS GONE 
546 NOP 
S47 STEPZ RTS ;STEP IS GONE 
548 !Ir 

549 !Ir Return here from GOTOCX 
S50 • 
5Sl • NOTE: ThiA addre ss is h.11.rd-coded in BFUNC of the 
552 * video f1 r11wa re 
553 * 
554 RETCXl STA SF.TSLOTCXROH ; restore bank 
SS 5 RETCX2 RTS 
S56 
5S7 • 
SSS USR 
559 * 

NOP 

JMP 

;sieply ret1..1rn 

USRADR ;JUMP TO CO NTROL- Y VECTOR IN RAH 

S60 WRITE LDA 1$40 
S61 WRT2 
S62 
563 
564 * 

STA 
JSR 
BEQ 

SETINTCXROM ;set internal ROH 
WRITF.2 ;write to tape 
RD2 ;•>always set slots, beep 

565 • SEARCH is called with a Monitor coUll'llland of the form 
566 !Ir HHLL(ADRI .ADR2 in which AORl < ADR2 and LL precedes HH 
567 • in t1.ernory. If HU is O, or omitted (LL(ADRl .ADR2), then 
568 • the single byte LL is searched for . You canno t search for 

FED7: 
FEDI 
FEDI 
FEDI AO 01 
FED9 A5 4J 
FEDS FO 04 FEEi 
FEDD DI JC 
FEOF 00 OA FEEB 
FEEi SS 
FEE2 AS 42 
FEE4 DI JC 
FEF.6 00 OJ FEEB 
FEES 20 92 FD 
FEEB 20 BA FC 
PEEE 90 E7 FED7 
FEFO 60 
FEPI 
FEFI AO OD 
FEFJ 20 B4 FB 
FEF6 
PEF6 20 00 FE 
FEF9 6S 
FEFA 68 
FEFB 00 6C FF69 
FEFD 
FEFD 80 07 CO 
FFOO 20 DI CS 
FF03 SD 06 CO 
FF06 F0 32 FF3A 
FFOS 00 2J FF2D 
FFOA 
FFOA Cl FO FO EC 
Hl3 
FF!) 
FFl3 
FF13 20 FD re 
FFl6 C9 AO 
FFIS FO F9 FF! J 
FFlA 60 
!"FIB 
FFIB BO 6D PFSA 
PPID C9 AO 
PFIP 00 2S PF49 
FF21 89 00 02 
FF24 A2 07 
FF26 C9 BD 
FF2S FO ID FFAI 
PP2A CB 
FF28 DO 6J FF90 
FF20 
FF2D A9 CS 
FF2F 20 ED FD 
FFJ2 A9 D2 
FF34 20 ED FD 

569 !Ir a two byte pair with a high byt e nf O. A lht of all 
570 • adre!\ses containing the specified pattern is displayed . 
571 • 
572 SE ARC.H LOY '1 
57J LDA A4H 
574 BEQ SRCHI 
575 CMP (AIL),Y 
5 7 6 BNE SRCH2 
577 SRC HI DEY 
57S LOA A4L 
579 CMP (AIL),Y 
5SO BNE SRCH2 
5SI JSR PRAI 
5S2 SRCH2 JSR NXTAI 
5SJ BCC SEARCH 
5S4 RTS 
5S5 • 
5S6 MINI 
5S7 
5SS • 

LOY 1$0 
JSR GOTOCX 

5S9 CRMON JSR BL! 
590 PLA 
591 
592 
59J • 

PLA 
BNE MONZ 

;set Y t o I 
; is hhh byte 0? 
;•) yes, onlv look for low byte 
;check high byte ff rat 
;•>no match, try next byte 
; 111atch, now check low byte 
; get low byte 
;does it match? 
;•>no match, try next byte 
; bytes match, print address 
;incre111ent AddresA 
;set Y back to l 

idispatch 111ini-as sembler call to 
;get internal ROH switched in 

HANDLE CR AS BLANK 
THEN POP STACK 
AND RETIJRN TO tfJN 

( ALWAYS) 

594 READ 
595 

STA 
JSR 
STA 
BEQ 
BNE 

SETINTr.XROH ;set interna l ROM 
XREA.D ;do tape read 

596 RD2 
597 

SETSLOTCXROH ;restore slot CX 
BELL ;read (write) ok, beep 

59S PRE RR ;error, print messajl;e 
599 • 
600 TITLE ASC "Apple /le" 
601 • 
602 * NNBL gets the next non-blank 
603 * 

for the mini-assembler 

604 NNBL 
60S 
606 
607 
608 • 

JSR UPHON 
CMP #$ AO 
BEQ NNBL 
RTS 

609 LOOKASC BCS DIG 
#$AO 
RTS6 
$200, y 
17 
1 $8D 
GE TN UM 

610 CMP 
611 BNE 
612 LDA 
6JJ LOX 
614 CMP 
61S BEQ 
616 INY 
617 BNE llXTBIT 
618 • 
619 PRERR 
620 
621 
622 

LOA #$CS 
JSR COUT 
LDA #$ 02 
JSR COUT 

;get cha.r. upshift, INY 
;is it blank? 
;yes, keP.p looking 

; 'Lt was a digit 
;check for quote ( ') 
;nope, return c har 
;else get next char 
;for shifting asc into A2L and A2H 
jW&8 it CR? 

;yes, go handle CR 
; advance index. 
;•)(always) into A2L and A2H 

;PRINT 'ERR', THEN FALL INTO 
; FWEEPER. 



FFJ7: 20 ED FD 62J JSR COUT PP9S:CA 677 DEX ; LEAVE X•$FF IF DIG 
FF3A: 624 * PF96: 10 F8 FF90 678 BPL NXTBIT 
FFJA:A9 87 62S BELL LOA 8$87 ;MAKE A JOYFUL NOISE, THEN RETIJRN . FF98:A5 Jl 679 NXTBAS LDA HOOE 

FF3C:4C ED FD 626 JHP COUT FF9A:DO 06 FFA2 680 BNE NXTBS2 ; IF MODE lS ZERO, 
FF3F : 627 * PF9C : BS JF 681 LOA A2H,X ; TIIEN COPY A2 TO Al AND A3 
FFJF:A5 48 628 RES'rORE LOA STATUS ;RESTORE 6S02 REGISTER CONTENTS PF9E:9S JD 682 STA AIH,X 
FF41 :48 629 PHA ; USE D BY DEBUG SOFTWARE FFA0:9S 4 1 68J STA AJH,X 
FF42:A5 4S 6JO LOA ASH FFA2:E8 684 NXTBS2 INX 
FF44 : A6 46 6JI RESTRI LOX XREG PFAJ :FO F3 FP98 68S BEO NXTRAS 
FF46:A4 47 6J2 LDY YREG FFAS :DO 06 PFAD 686 BNE NXTCHR 
FF48 : 28 6JJ PLP FFA7: 687 * 
FF49:60 6J4 RTS6 RTS FFA7: A2 00 688 GETNUH LDX #$00 ;CLEAR A2 
FF4A: 6JS • FFA9:86 JE 689 STX A2L 
FF4A :8S 4S 6J6 SAVE STA ASH ; SAVE 6S02 REGISTER CONTENTS FFAB:86 JF 690 STX A2H 
FF4C :86 46 6J7 SAVI STX XREG ; FOR DEBUG SOFTWARE FFAD:20 PD FC 691 NXTCHR JSR UPMON ;ge t char 1 upshift. INY 
FF4E:84 47 6J8 STY YREG FFBO:EA 692 NOP ; !N't now done in UPHON 

FFS0:08 639 PHP FFBI :49 BO 69J EOR #$80 

FP51: 68 640 PLA FFBJ :C9 OA 694 CHP 1$0A 
FF52:BS 48 641 STA STATUS FFBS :90 DJ FF8A 69S BCC DIG ; BR IF HEX DIGIT 

FF54 : BA 642 TSX FFB7 :69 88 696 ADC 1$88 
PP55:86 49 643 STX SPNT FFB9 :C9 FA 697 CHP #$FA 

FF57:n8 644 CLO FPBB:4C IB FF 698 JMP LOOKASC ;check for ASCII input 
FF58:60 64S RTS PFBE : 699 • 

PF59: 646 • FFBE:A9 FE 700 TOSUB LDA l <GO ; DISPATCH TO SUBROUTINE, BY 

FF59: 20 84 FE 647 OLORST JSR SETNORH ;SF. 'f SCREEN HOOE FFC0:48 701 PHA ; PUSHING THE HI-ORDER SUBR ADDR, 

FPSC:20 2F FB 648 JSR INIT ; AND INIT KBC/SCREEN FFC l :B9 EJ FF 702 LOA SUBTBL, Y ; TIIEN THE LO-ORDER SUBR ADDR 

FF5F:20 93 FE 649 JSR SETV!D ; AS I/O DEVS . PFC4: 48 703 PHA ; ONTO THE STACK, 

FF62: 20 89 FE 650 JSR SETKBO FFC5 : AS JI 704 LDA MODE ; (CLEARING THE MOOE, SAVE THE OLD 

FF65: 651 • FFC7 :AO 00 70S ZMODE LDY #$00 ; MODE IN A-REG), 

PF65:D8 6S2 MON CLD ;HUST SET HEX MODE I FFC9 : 84 JI 706 STY MODE 

FF66:20 JA FF 65J JSR BELL ; FWEEPER, FFCB:60 707 RTS ; AND I RTS I TO THE SUBROUTINE! 

FF69:A9 AA 654 HONZ LOA #$AA ; ' *' PROMPT FOR MONITOR FFCC: 708 • 

FF6B :8S JJ 655 STA PROMPT FFCC: BC 709 CHRTBL DFB $BC ;-c (BASIC WARH START) 

FF6D:20 67 FD 656 JSR GE TL NZ ;READ A LINE OF INPUT FFCD: B2 710 DFB $B2 ;-Y (USER VECTOR) 

FF70:20 C7 t'1' 657 JSR ZHODE ;CLEAR MONITOR MODE, SCAN IDX FFCE: BE 71 l DFB $BE ;'"'E (OPEN AND DISPLAY llEGlSTERS) 
FF7J:20 A7 FF 658 NXTITH JSR GETNUH ;GET ITEH, NON-HEX FPCP:9A 712 DFB $9A ;I (enter mini-asse11bler) 
FF76:84 34 659 STY YSAV ; CHAR IN A-REG. FFDO:EF 713 DFB SEF ;V (MEMORY VERIFY) 

FF7R:AO 17 660 LDY #$ 17 ; X-REG•O IF NO HEX INPUT FFDI :C4 714 DFB $C4 ;I< (IN#SLOT) 

PP7A:88 661 CHRSRCH DEY FFD2: EC 715 DFB SEC ;S (seat'ch for 2 bytes) 
H'7B:JO ES FF65 662 BMI MON ;COMMAND NOT FOUND, BEEP & TRY AGAIN. FFDJ :A9 716 DFB $A9 ;-P (PR#SLOT) 

PF70 : D9 CC FP 66J CHP CHRTBL, Y ; FIND COMMAND CHAR IN TABLE PFD4 :BB 717 DFB $BB ;-B (BASIC COLD START) 
FF80:DO F8 PF7A 664 BNE CHRSRCH ; NOT THIS TIMF. FFDS:A6 718 DFB $A6 ; ' - ' (SUBTRACTION) 
FF82:20 BE PF 665 JSR TO SUB ;GOT IT! CALL CORRESPONDING SUBROUTINE FFD6 :A4 719 DFB $A4 ; '+' (ADDITION) 

FF85:A4 J4 666 LOY YSAV ; PROCESS NEXT ENTRY ON HIS LINE FFD7 :06 720 DFB $06 ;M (MEHORY MOVE) 
FF87:4C 7J FF 667 JHP NXTITH FPD8 :95 721 DFB $95 ; 

1
(

1 (DE LIMITER FOR MOVE 1 VFY) 
FF8A: 668 • FPD9:07 722 DFB $07 ;N (SET NORMAL VIDEO) 
FF8A:A2 OJ 669 DIG LDX #$OJ FFDA:02 723 DFB $02 ; I (SET INVERSE VIDEO) 
FFBC:OA 670 ASL A PFDB:05 724 DPB $05 ;L (DISASSEMBLE 20 INSTRS) 
FF8D : OA 67 l ASL A ;GOT HEX DIGIT, FFDC :FO 725 DPB $FO ;W (WRITE TO TAPE) 

FF8E:OA 672 ASL A ; SHIFT INTO A2 PFDD 00 726 DPB $00 ;G (EXECUTE PROG'RAll) 
FF8F:OA 67J ASL A PPDE EB 727 DFB $EB ;R (READ FROM TAPE) 
FF90:0A 674 NXTBIT ASL A PFDF 93 728 DFB $9J ; ' : ' (MEMORY FILL) 
FF91:26 JE 67S ROL A2L PPEO A7 729 DFB $A7 ; I . I (ADDRESS DELIMITER) 
FF93: 26 JP 676 ROL A2H PFEl C6 730 DFB $C6 ; 'CR' (END OF INPUT) 

~/ 
(11 



(.,) FFE2 99 731 DFB $99 ;BLA!lt C4E7:26 44 22 AMOD3 ROL A5L ;11htft bit into form.at 
~ FFE3 732 • C4E9:EO 03 23 CPX 1$03 
0-

FFE3 7)) • Table of low order monitor routine dispatch C4EB:DO OD C4FA 24 BNE AMOD6 
FFE3 734 * addrea1e1. High byt.e alvaye $F! C4ED:20 A7 FF 2S JSR G!TNUM 
FPE3 73S • C4FO:A5 3F 26 LOA A2H ;get high byte of addrees 
FFE3 B2 736 SUBTBL DFB )BASCONT-1 ; "C (BASIC war• start) C4F2:FO 01 C4FS 27 BEO AMODS :·> 
FFE4 C9 737 DFB )USR-1 ;"'l (not ueed ) C4F4:E8 28 INX 
FPES BE 738 DFB >REGZ-1 ;'"'E (open and diaplay ·regietere) C4FS :86 3S 29 AM005 STX YSAVL 
FFE6 F0 739 DFB >KINI-I jllini assembler C4F7 :A2 03 30 LDX #$03 
FFE7 35 740 DFB )VPY-1 ;v (•e1nOry verify) C4F9:88 31 DEY 

PFE8 8C 741 DFB >INPRT-1 ;"K (lNI SLOT) C4FA:86 3D 32 AMOD6 STX ALH 
FFE9 D6 742 DFB )SEARCH-I ;1earch for pattern C4FC:CA 33 DEX 

FFEA 96 743 DFB )OUTPRT-1 ; •p (PR#SLOT) C4FD:l0 C9 C4C8 34 BPL AMODI 
FFEB AF 744 DFB )XBASIC- 1 ; " B (BASIC cold start) C4FF : 60 JS RTS 
FFEC 17 74S DFB )SETMODE-1 ; 1

-
1 ( s ubtraction) C500 : 36 • 

FFED 17 746 DFB ) SETMODE-1 ; '-+-' (addition) CF3A: CF3A 37 ORG C80RG+$73A 

FFEE 28 747 DFB )MOVE-I ;M (•emory 11ove) CFJA: 38 • 

FPEP IF 748 DFB )LT-I : '(' (delim for 11.ove,vfy) CFJA: 39 * Calculate offset byte for relative addresses 
FFFO 83 749 DFB )SETNORM-l ;N (set noraal video) CFJA: 40 • 

FFFI 7F 750 DFB )SETINV-1 ; I (set i nvene video) CF3A : E9 81 41 REL SBC #$8 1 ;calc relative address 

FFF2 SO 751 DFB )LIST-I ;L (dlaasseable 20 inst.rs) CF3C :4A 42 LSR A 

FFF3 CC 7S2 DFB )llRITE-1 ;W (write. to tape) CFJD : DO 14 CFSJ 43 BNE GO ERR ;bad branch 

FFF4 BS 753 DFB >GO-I ;G (execute prosr;ran) CF3F:A4 3F 44 LDY A2H 

FFPS FC 754 DFB )READ-I ;R (read fron1. tape ) CF4l :A6 3E 4S LDX A2L 

FFF6 l 7 7SS DPB )SE'l'MODE-1 ; I:' (-IDOry fill) CF43:00 01 CF46 46 BNE RELL 

FFP7 l 7 756 DFB )SETMODE-1 ; I • ' (addreu deli•iter) CF4S:88 47 DEY ;point to offset 

FFF8 PS 7S7 DFB )CRMON-1 ;'CR' (end of input) CF46:CA 48 RELi DEX ;displacement -

FFF9 03 7S8 DFB )BUNK-I ;BLANK CF47 :8A 49 TXA 

FFFA 7S9 • CF48: 18 so CLC 

PFFA PB 03 760 ow NKI ;NON-HASKABLE INTERRUPT VECTOR CF49: E5 3A 51 SBC PCL ;subtr4ct current PCL 

FPFC 62 FA 761 Oii RESET ; RESET VECTOR CF4B:8S 3E 52 STA A2L ;and save as dhplacen.ent 

FFFE FA CJ 762 ow IRO ; INTERRUPT REQUEST VECTOR CF4D:IO Ol CF50 SJ BFL REL2 ;check page 

0000 19 INCLUDE KINI CF4F:C8 S4 INV 
0000 l • CF50 : 98 55 REL2 TY.A ;get page 

0000 2 * Apple / /e Mini Asse1tbler CFS! :ES 3B 56 SBC PCH ;check page 
0000 3 • CF53 : DO 40 CY95 57 GOERR BNE HINl~RR ;dis play error 

0000 4 * Got 111.nemonic, check address mode CFSS: SB • 

0000 s • CPS5: 59 * Move instruction to me11ory 

C4C8 C4C8 6 ORG C30RG+$1C8 CFS5: 60 • 
C4C8 7 • CFS5 :A4 2F 61 MOVINST LOY LENGTH ;get instruction lenS{th 

C4C8 20 13 FF 8 AMOD L JSR NNBL ; get next non-blank CP57:B9 30 00 62 MOVI IJ)A AlH,Y ;get a byte 
C4CB 84 34 9 STY YSAV ;save Y CF5A:9l 3A 63 S'rA (PCL),Y ;and •eve tt 
C4CD DD 84 F9 10 CMP CHARI, X CF5C :88 64 DEY 
C4DO : DO 13 C4ES II BNE AMOD2 CF5D 10 P8 CFS7 6S BFL HOVI 
C4D2:20 13 FF 12 JSR NNBL ;get next non-blank CF5F 66 • 
C4DS:DD BA F9 13 CKP CRAR2 , X CF5F 67 * Display i nstruction 
C408:FO OD C4E7 14 BEQ AMO DJ CF5F 68 • 

C4DA: BO BA F9 IS LOA CHAR2,X ;done yet? CF5F 20 48 F9 69 JSR PRBLNK ;print blanks tn 11.ake ProOOS work 
C4DD:FO 07 C4E6 16 BEO AKOD4 CF62 20 IA FC 70 JSR UP ;rnove up 2 11.nes 
C4DF:C9 A4 17 CMP #$A4 ; if " $" then done CF6S 20 IA FC 71 JSR UP 
C4EI :FO 03 C4E6 18 BEO AMOD4 CF68 4C El FC 72 JKP DI SL IN ;disassemble it, •)DOINST 
C4E3 :A4 34 19 LOY YSAV ;restore Y CF6B 73 • 

C4E5: 18 20 AKOD2 CLC CF68 74 * Compare disassembly of all known opcodes with 
C4E6 :88 21 AMOD4 DEY CF6B 75 * the one typed in until a match is found 



(;> 
.t:.. 
-...J 

CF6B 
CF61 AS 3D 
CF6D 20 8! F8 
CF70 AA 
CF7! BD 00 FA 
CF74 CS 42 
CF76 00 13 CP8B 
CF78 BO CO F9 
CF71 CS 43 
CF7D 00 OC CF8B 
CF7F AS 44 
CF81 A4 2! 
CF83 CO 90 
CF8S FO B3 CF3A 
CF87 CS 2£ 
CF89 ro CA CF55 
CF8B C6 30 
CF8D 00 DC CF6B 
CF8F £6 44 
CF91 C6 35 
CF93 F0 06 CF6B 
CF95 
CF95 
CF95 
CF9S 
CF9S A4 34 
CF97 98 
CF98 AA 
CF99 4C 02 FC 
CF9C 
CF9C 
CF9C 
c~·9c 

CF9C 
CF9C 20 C7 FF 
CF9F AD 00 02 
CFA2 C9 AO 
CFA4 F0 12 CFB8 
CFA6 C9 80 
CFAB 00 01 CFAB 
CFAA 60 
CFAB 
CFAB 20 A7 FF 
CFAE C9 93 
CFBO 00 ES 
CFB2 8A 
CF83 FO £2 
CFBS 
CFBS 20 78 FE 
CFB8 A9 03 
CFBA 8S 30 
CFBC 20 13 FF 
CFBF OA 
CFCO E9 BE 

CF97 

CF97 

76 • 
77 GETOP LOA AIH ;get opcode 
78 JSR 1NSOS2 ;deteraine aneaonic index 
79 TAX ;X • index 
80 LOA MllEMR,X ;get right half of index 
81 CHP A4L jdoea it natch entry? 
82 BNI! NXTOP ;•>try next opcode 
83 LOA HNEML,X ;get left half of index 
84 CHP A4H ;does it aatch entry? 
85 BNE NXTOP ;•>no, try next opcode 
86 LOA ASL ;found opcode, check address aode 
87 LOY FORMAT ;get addr. flOde foraat for that opcode 
88 CPY #$90 ;h it relative? 
89 B!Q REL ;•>ye1, calc relative address 
90 CHP FORMAT jdoea mode match? 
91 BE() HOVINS'f j•)yea, move instruction to ae111.ory 
92 NXTOP DEC AIH ;ehe try next opcode 
93 BNE GETOP ; •>~o try it 
94 INC ASL ;else try next format 
95 DEC YSAVl 
96 B!Q GETOP ;•)go try next foraat 
97 • 
98 * Point to the error with a caret, beep, and fall 
99 * into the •ini-aaae11bh.r. 

100 • 
IOI HINIERR LOY YSAV ;get position 
102 ERR2 TYA 
103 TAX 
104 JHP ERR] ;display error, •)DOINST 
!OS • 
106 * llead a line of input.. If prefaced with " 11

, decode 
107 * 11ne-anic. If 11 $" do monitor command. Otherwise parse 
108 * hex address befo?'e decoding rmemonic. 
109 • 
110 DOINST JSR ZHOOE ;clear mode 
111 LOA $200 ;get fint char in line 
112 CHP #$AO ;if bla.nk, 
113 BRO DOLIN ;• )go atte•pt disassembly 
114 CHP 1$80 ;is 1.t return? 
115 BNE GETll ;•>no, continue 
116 RTS ;else return to Monitor 
117 • 
118 GETll JSR GETNUH ;parse hexadeciaal input 
119 CHP #$93 ;look for "ADDR:" 
120 GOERR2 BNE ERR2 ;no 11 

: ", display error 
121 TXA ;X nonzero if address entered 
122 BE() ERR2 ;no "ADDR", display err ... r 
123 • 
124 JSR AIPCLP ;•ove add rese to PC 
125 DOLIN LOA #$03 ;get starting opcode 
126 STA AIH ;and save 
127 NXTCH JSR NNBL ;get next non-blank 
128 ASL A ;v-.Udate entry 
129 SBC #$BE 

CFC2 :C9 C2 130 CHP #$C2 
CFC4 : 90 DI CF97 131 BCC ERR2 ; • >f lAg bad 11.nemonic 
CFC6: 132 • 
CFC6 : 133 * Form mnemonic for later co!l'lparison 
CFC6 : 134 • 
CFC6 :0A !JS ASL A 
CFC7 :OA 136 ASL A 
CFC8 : A2 04 137 LOX #$04 
CFCA:OA 138 NXTHN ASL A 
CFCB:26 42 139 ROL A4L 
CFC0:26 43 140 ROL A4H 
CFCF: CA 141 DEX 
CFDO:IO F8 CFCA 142 8PL NXTHN 
CFD2:C6 30 143 DEC AIH ;decrement 11.ne11onic count 
CFD4: FO F4 CFCA 144 BEQ NXTHN 
CFD6:10 E4 CFBC 14S BPL NXTCH 
CFD8 :A2 05 146 LOX #$S ; inde x into address •ode tables 
CFDA:20 C8 C4 147 JSR AHOOI ;do this elsewhere 
CFOO:AS 44 148 LOA ASL ;get fon.at. 
CFOF : OA 149 ASL A 
CFEO:OA 150 ASL A 
CFEI :O S 35 ISi ORA YSAVl 
CFEJ :C9 20 152 CHP #$20 
CFES : BO 06 CFED 153 BCS AHOD7 
CFE7 :A6 35 IS4 LOX YSAVI ;gf'!t our format 
CFE9 : FO 02 CFEO 15S BEO AH007 
CFEB:09 80 IS6 ORA #$80 
CFED : 85 44 IS7 AH007 STA ASL ;update foraat 
CFEF : 84 34 158 STY YSAV ;update position 
CFFI : 89 00 02 IS9 LOA $0200,Y ;Ret next character 
CFF4 :C9 88 160 CHP ISBB ;ta it a 11

;
11 ? 

CFF6 : FO 04 CPFC 161 BE() AHOD8 j•)yes , ak.ip comMent 
CFF8 :C9 80 162 CHP #$80 ; h it carriage return 
CFFA:OO 84 CFBO 163 BNE GOERR2 
CFFC:4C 6B CF 164 AHOD8 JHP GE TOP ;get next opcode 
CHF: 165 • 
CFFP :OO 166 OFB $00 :byte f o r JU.king CTOD check.sum ok 





Glossary 

accumulator: The register in the 65C02 
microprocessor where most computations are 
performed. 

ACIA: Acronym for Asynchronous 
Communications Interface Adapter. A single chip 
that converts data from parallel to serial form and 
vice versa. An ACIA handles serial transmission 
and reception and RS-232-C signals under the 
control of its internal registers, which can be set 
and changed by firmware or software. 

acronym: A word formed from the initial letters 
of a name or phrase, such as ROM (from read
only memory). 

address: A number that specifies the location of 
a single byte of memory. Addresses can be given 
as decimal integers or as hexadecimal integers. A 
64K system has addresses ranging from 0 to 65535 
(in decimal) or from $0000 to $FFFF (in 
hexadecimal). 

algorithm: A step-by-step procedure for solving 
a problem or accomplishing a task. 

American Simplified Keyboard: See Dvorak 
keyboard. 

analog: Varying smoothly and continuously over 
a range, rather than changing in discrete jumps. 
For example, a conventional 12-hour clock face is 
an analog device that shows the time of day by the 
continuously changing position of the clock's 
hands. Compare digital. 

analog data: Data in the form of continuously 
variable quantities. Compare digital data. 

analog signal: A signal that varies continuously 
over time, rather than being sent and received in 
discrete intervals. Compare digital signal. 

analog-to-digital converter (ADC): A device 
that converts quantities from analog to digital 
form. For example, computer hand controls 
convert the position of the control dial (an analog 
quantity) into a discrete number (a digital 
quantity) that changes stepwise even when the dial 
is turned smoothly. 

AND: A logical operator that produces a true 
result if both its operands are true, and a false 
result if either or both of its operands are false. 
Compare OR, NOT, exclusive OR. 

ANSI: Acronym for American National 
Standards Institute, which sets standards for many 
technical fields and is the most common standard 
for computer terminals. 

Apple I: The first Apple computer. It was built in 
a garage in California by Steve Jobs and Steve 
Wozniak. 

Applesoft BASIC: The Apple II dialect of the 
BASIC programming language. An interpreter for 
creating and executing Applesoft BASIC programs 
is built into the firmware of computers in the 
Apple II family. See also BASIC, Integer 
BASIC. 

Apple ill: An Apple computer; part of the 
Apple II family. The Apple III offered a built-in 
disk drive and built-in RS-232-C (serial) port. Its 
memory was expandable to 256K. 

349 



Apple II: A family of computers, including the 
origir1al Apple II, the Apple II Plus, the Apple Ile, 
the Apple Ile, and the Apple IIGS. The original 
Apple II used Integer BASIC instead of Applesoft 
BASIC, and it required a keyboard command 
(PR#6) in order to start up from a disk. 

Apple Ile: A transportable personal computer in 
the Apple II family, with a disk drive and 80-
column display capability built in. 

Apple Ile: A personal computer in the Apple II 
family with seven expansion slots and an auxiliary 
memory slot that allow the user to enhance the 
computer's capabilities with peripheral and 
auxiliary cards. The Apple Ile has been improved 
and enhanced over the years. 

Apple Ile 80-Column Text Card: A peripheral 
card that plugs into the Apple He's auxiliary 
memory slot and allows the computer to display 
either 40 or 80 characters per line. 

Apple Ile Extended 80-Column Text Card: A 
peripheral card that plugs into the Apple Ile's 
auxiliary memory slot and allows the computer to 
display either 40 or 80 characters per line while 
extending the computer's memory capacity by 
64K. 

Apple IIGS: A powerful new member of the 
Apple II family. The Apple IIGS uses a 16-bit 
microprocessor and has 256K of RAM. It has slots 
like the Apple Ile and ports like the Apple Ile, and 
contains a 15-voice custom sound chip. 

Apple II Pascal: A software system for the 
Apple II family that lets you create and execute 
programs written in the Pascal programming 
language. Apple II Pascal was adapted by Apple 
Computer from the University of California, San 
Diego, Pascal Operating System (UCSD Pascal). 

Apple II Plus: A personal computer in the 
Apple II family with expansion slots that allow the 
user to enhance the computer's capabilities with 
peripheral and auxiliary cards. 

350 Glossary 

application program: A program written for 
some specific purpose, such as word processing 
data base management, graphics, or 
telecommunication. Compare system 
program. 

argument: A value on which a function or 
statement operates; it can be a number or a 
variable. For example, in the BASIC statement 
VTAB 10, the number 10 is the argument. 
Compare operand. 

arithmetic expression: A combination of 
numbers and arithmetic operators (such as 3 + 5) 
that indicates some operation to be carried out. 

arithmetic operator: An operator, such as +, 
that combines numeric values to produce a 
numeric result. Compare logical operator, 
relational operator. 

ASCII: Acronym for American Standard Code 
for Information Interchange; pronounced 
"ASK-ee." A code in which the numbers from 0 to 
127 stand for text characters. ASCII code is used 
for representing text inside a computer and for 
transmitting text between computers or between a 
computer and a peripheral device. Compare 
EBCDIC. 

assembler: A language translator that converts a 
program written in assembly language into an 
equivalent program in machine language. The 
opposite of a disassembler. 

assembly language: A low-level programming 
language in which individual machine-language 
instructions are written in a symbolic form that's 
easier to understand than machine language itself. 
Each assembly-language instruction produces one 
machine-language instruction. See also machine 
language. 

asynchronous: Not synchronized by a mutual 
timing signal or clock. Compare synchronous . . 



asynchronous transmission: A method of 
data transmission in which the receiving and 
sending devices don't share a common timer, and 
no timing data is transmitted. Each information 
character is individually synchronized, usually by 
the use of start and stop bits. The time interval 
between characters isn't necessarily fixed. 
Compare synchronous transmission. 

auxiliary slot: The special expansion slot inside 
the Apple Ile used for the Apple Ile 80-Column 
Text Card or Extended 80-Column Text Card, and 
also for the RGB monitor card. The slot is labeled 
"AUX. CONNECTOR" on the circuit board. 

base address: In indexed addressing, the fixed 
component of an address. 

BASIC: Acronym for Beginners All-purpose 
Symboltc Instruction Code. BASIC is a high-level 
programming language designed to be easy to 
learn. Two versions of BASIC are available from 
Apple Computer for use with all Apple II-family 
systems: Applesoft BASIC (built into the 
firmware) and Integer BASIC. 

baud: A unit of data transmission speed: the 
number of discrete signal state changes per 
second. Often, but not always, equivalent to bits 
per second. Compare bit rate. 

binary: Characterized by having two different 
components, or by having only two alternatives or 
values available; sometimes used synonymously 
with binary system. 

binary digit: The smallest unit of information in 
the binary number system; a 0 or a 1. Also called a 
bit. 

binary operator: An operator that combines two 
operands to produce a result. For example, + is a 
binary arithmetic operator; < is a binary 
relational operator; OR is a binary logical 
operator. Compare unary operator. 

binary system: The representation of numbers 
in the base-2 system, using only the two digits 0 
and 1. For example, the numbers 0, 1, 2, 3, and 4 
become 0, 1, 10, 11, and 100 in binary notation. 
The binary system is commonly used in computers 
because the values 0 and 1 can easily be 
represented in a variety of ways, such as the 
presence or absence of current, positive or 
negative voltage, or a white or black dot on the 
display screen. A single binary digit-a 0 or a 1-is 
called a bit. Compare decimal, hexadecimal. 

bit: A contraction of binary digit. The smallest 
unit of information that a computer can hold. The 
value of a bit (1 or O) represents a simple two-way 
choice, such as yes or no, on or off, positive or 
negative, something or nothing. See also binary 
system. 

bit rate: The speed at which bits are transmitted, 
usually expressed as bits per second, or bps. 
Compare baud. 

bits per second: See bit rate. 

board: See printed-circuit board. 

body: In BASIC, the statements or instructions 
that make up a part of a program, such as a loop or 
a subroutine. 

boot: Another way to say start up. A computer 
boots by loading a program into memory from an 
external storage medium such as a disk. Starting up 
is often accomplished by first loading a small 
program, which then reads a larger program into 
memory. The program is said to "pull itself up by 
its own bootstraps"-hence the term 
bootstrapping or booting. 

boot disk: See startup disk. 

bootstrap: See boot. 

bps: See bit rate. 

branch: (v) To pass program control to a line or 
statement other than the next in sequence. (n) A 
statement that performs a branch. See 
conditional branch, unconditional branch. 

Glossary 351 



BREAK: A SP ACE (O) signal, sent over a 
communication line, of long enough duration to 
interrupt the sender. 1bis signal is often used to 
end a session with a time-sharing service. BREAK 
is also used in BASIC to stop execution of a 
program. It's generated by pressing Control-C. 

BRK: A "software interrupt." An instruction that 
causes the 6502 or 65C02 microprocessor to halt. 
Pronounced "break." 

buffer: A "holding area" of the computer's 
memory where information can be stored by one 
program or device and then read at a different rate 
by another; for example, a print buffer. In editing 
functions, an area in memory where deleted (cut) 
or copied data is held. In some applications, this 
area is called the Clipboard. 

bug: An error in a program that causes it not to 
work as intended. The expression reportedly 
comes from the early days of computing when an 
itinerant moth shorted a connection and caused a 
breakdown in a room-size computer. 

bus: A group of wires or circuits that transmit 
related information from one part of a computer 
system to another. In a network, a line of cable 
with connectors linking devices together. A bus 
network has a beginning and an end. (It's not in a 
closed circle or T shape.) 

byte: A unit of information consisting of a fixed 
number of bits. On Apple II systems, one byte 
consists of a series of eight bits, and a byte can 
represent any value between 0 and 255. The 
sequence represents an instruction, letter, 
number, punctuation mark, or other character. 
See also kilobyte, megabyte. 

cable: An insulated bundle of wires with 
connectors on the ends; the number of wires 
varies with the type of connection. Examples are 
serial cables, disk drive cables, and AppleTalk 
cables. 

352 Glossary 

call: (v) To request the execution of a subroutine, 
function, or procedure. (n) A request from the 
keyboard or from a procedure to execute a named 
procedure. See procedure. 

carriage return: An ASCII character (decimal 
13) that ordinarily causes a printer or display 
device to place the next character on the left 
margin. 

carrier: The background signal on a 
communication channel that is modified to carry 
information. Under RS-232-C rules, the carrier 
signal is equivalent to a continuous MARK (1) 
signal; a transition to 0 then represents a start bit. 

carry flag: A status bit in the 6502 or 65C02 
microprocessor, used as a ninth bit with the eight 
accumulator bits in addition, subtraction, 
rotation, and shift operations. 

central processing unit (CPU): The "brain" of 
the computer; the microprocessor that performs 
the actual computations in machine language. See 
microprocessor. 

character: Any symbol that has a widely 
understood meaning and thus can convey 
information. Some characters-such as letters, 
numbers, and punctuation-can be displayed on 
the monitor screen and printed on a printer. 
Compare control character. 

character code: A number used to represent a 
character for processing by a computer system. 

character set: The entire set of characters that 
can be either shown on a · monitor or used to code 
computer instructions. In a printer, the entire set 
of characters that the printer is capable of 
printing. 

Clear To Send: An RS-232-C signal from a DCE 
to a DTE that is normally kept false until the DCE 
makes it true, indicating that all circuits are ready 
to transfer data out See Data Communication 
Equipment, Data Terminal Equipment. 



code: (1) A number or symbol used to represent 
some piece of information. (2) The statements or 
instructions that make up a program. 

cold start: The process of starting up the Apple II 
. when the power is first turned on (or as if the power 
had just been turned on) by loading the operating 
system into main memory, and then loading and 
running a program. Compare warm start. 

column: A vertical arrangement of graphics 
points or character positions on the display. 

command: An instruction that causes the 
computer to perform some action. A command 
can be typed from a keyboard, selected from a 
menu with a hand-held device (such as a mouse), 
or embedded in a program. 

compiler: A language translator that converts a 
program written in a high-level programming 
language (source code) into an equivalent 
program in some lower-level language such as 
machine language (object code) for later 
execution. Compare interpreter. 

composite video: A video signal that includes 
both display information and the synchronization 
(and other) signals needed to display it. See RGB 
monitor. 

computer: An electronic device that performs 
predefined (programmed) computations at high 
speed and with great accuracy. A machine that is 
used to store, transfer, and transform 
information. 

computer language: See programming 
language. 

conditional branch: A branch whose execution 
depends on the truth of a condition or the value of 
an expression. Compare unconditional branch. 

configuration: (1) The total combination of 
hardware components-CPU, video display 
device, keyboard, and peripheral devices-that 
make up a computer system. (2) The software 
settings that allow various hardware components 
of a computer system to communicate with each 
other. 

connector: A plug, socket, jack, or port. 

constant: In a program, a symbol that represents 
a fixed, unchanging value. Compare variable. 

control character: A nonprinting character that 
controls or modifies the way information is 
printed or displayed. In the Apple II family, 
control characters have ASCII values between 0 
and 31, and are typed from a keyboard by holding 
down the Control key while pressing some other 
key. In the Macintosh faniily, the Command key 
performs a similar function. 

control code: One or more nonprinting 
characters-included in a text file-whose 
function is to change the way a printer prints the 
text. For example, a program may use certain 
control codes to turn boldface printing on and off. 
See control character. 

control key: A general term for a key that 
controls the operation of other keys; for example, 
Apple, Caps Lock, Control, Option, and Shift. 
When you hold down or engage a control key while 
pressing another key, the combination makes that 
other key behave differently. Also called a 
modifier key. 

Control key: A specific key on Apple II-family 
keyboards that produces control characters 
when used in combination with other keys. 

controller card: A peripheral card that connects 
a device such as a printer or disk drive to a 
computer's main logic board and controls the 
operation of the device. 

Glossary 353 



Control-Reset: A combination keystroke on 
Apple II-family computers that usually causes an 
Applesoft BASIC program or command to stop 
immediately. If a program disables the Control
Reset feature, you need to turn the computer off to 
get the program to stop. 

copy protect: To make a disk uncopyable. 
Software publishers frequently try to copy protect 
their disks to prevent them from being illegally 
duplicated by software pirates. Compare write 
protect. 

CPU: See central processing unit. 

crash: To cease to operate unexpectedly, 
possibly destroying information in the process. 

current Input device: The source, such as the 
keyboard or a modem, from which a program is 
currently receiving its input. 

current output device: The destination, such as 
the display screen or a printer, currently receiving 
a program's output. 

cursor: A symbol displayed on the screen 
marking where the user's next action will take effect 
or where the next character typed from the 
keyboard will appear. 

DAC: See digital-to-analog converter. 

data: Information, especially information used 
or operated on by a program. The smallest unit of 
information a computer can understand is a bit. 

data bits: The bits in a communication transfer 
that contain information. Compare start bit, 
stop bit. 

Data Carrier Detect (DCD): An RS-232-C signal 
from a DCE (such as a modem) to a DTE (such as 
an Apple Ile) indicating that a communication 
connection has been established. See Data 
Communication Equipment, Data Terminal 
Equipment. 

354 Glossary 

Data Communication Equipment (DCE): As 
defined by the RS-232-C standard, any device that 
transmits or receives information. Usually this 
device is a modem. 

data set: A device that modulates, demodulates, 
and controls signals transferred between business 
machines and communication facilities. A form of 
modem. 

Data Set Ready (DSR): An RS-232-C signal from 
a DCE to a DTE indicating that the DCE has 
established a connection. See Data 
Communication Equipment, Data Terminal 
Equipment. 

Data Terminal Equipment (DTE): As defined 
by the RS-232-C standard, any device that 
generates or absorbs information, thus acting as 
an endpoint of a communication connection. A 
computer might serve as a DTE. 

Data Terminal Ready (DTR): An RS-232-C 
signal from a DTE to a DCE indicating a readiness 
to transmit or receive data. See Data 
Communication Equipment, Data Terminal 
Equipment. 

DCD: See Data Carrier Detect. 

DCE: See Data Communication Equipment. 

debug: A colloquial term that means to locate 
and correct an error or the cause of a problem or 
malfunction in a computer program. Compare 
troubleshoot. See also bug. 

decimal: The common form of number 
representation used in everyday life, in which 
numbers are expressed in in the base-10 system, 
using the ten digits 0 through 9. Compare binary, 
hexadecimal. 

default: A preset response to a question or 
prompt. The default is automatically used by the 
computer if you don't supply a different response. 
Default values prevent a program from stalling or 
crashing if no value is supplied by the user. 



deferred execution: The execution of a BASIC 
program instruction that is part of a complete 
program. The program instruction is executed 
only when the complete program is run. You defer 
execution of the instruction by preceding it with a 
program line number. The complete program 
executes consecutive instructions in numerical 
order. Compare immediate execution. 

Delete key: A key on the upper-right corner of 
the Apple Ile and Ile keyboards that erases the 
character immediately preceding (to the left of) 
the cursor. Similar to the Macintosh Backspace 
key. 

delimiter: A character that is used for 
punctuation to mark the beginning or end of a 
sequence of characters, and which therefore is not 
considered part of the sequence itself. For 
example, Applesoft BASIC uses the double 
quotation mark (") as a delimiter for string 
constants: the string "DOG" consists of the three 
characters D, 0, and G, and does not include the 
quotation marks. 

demodulate: To recover the information being 
transmitted by a modulated signal. For example, a 
conventional radio receiver demodulates an 
incoming broadcast signal to convert it into the 
sound emitted by the radio's speaker. Compare 
modulate. 

device: Frequently used as a short form of 
peripheral device. 

device driver: A program that manages the 
transfer of information between the computer and 
a peripheral device. 

device handler: See device driver. 

digit: (1) One of the characters 0 through 9, used 
to express numbers in decimal form. (2) One of 
the characters used to express numbers in some 
other form, such as 0 and 1 in binary or 0 through 
9 and A through F in hexadecimal. 

digital: Represented in a discrete 
(noncontinuous) form, such as numerical digits or 
integers. For example, contemporary digital 
clocks show the time as a digital display (such as 
2:57) instead of using the positions of a pair of 
hands on a clock face. Compare analog. 

digital data: Data that can be represented by 
digits-that is, data that are discrete rather than 
continuously variable. Compare analog data. 

digital signal: A signal that is sent and received 
in discrete intervals. A signal that does not vary 
continuously over time. Compare analog signal. 

digital-to-analog converter: A device that 
converts quantities from digital to analog form. 

DIP: See dual in-line package. 

DIP switches: A bank of tiny switches, each of 
which can be moved manually one way or the 
other to represent one of two values (usually on 
and ofO. See dual in-line package. 

disassembler: A language translator that 
converts a machine-language program into an 
equivalent program in assembly language, which 
is easier for programmers to understand. The 
opposite of an assembler. 

disk: An information-storage medium consisting 
of a flat, circular, magnetic surface on which 
information can be recorded in the form of small 
magnetized spots, in a manner similar to the way 
sounds are recorded on tape. See floppy disk, 
hard disk. 

disk-based: See disk-resident. 

disk controller card: A peripheral card that 
provides the connection between one or two disk 
drives and the computer. This connection, or 
interface, is built into both the Apple Ile and 
Macintosh-family -computers. 

disk drive: The device that holds a disk, retrieves 
information from it, and saves information to it. 

Glossary 355 



disk envelope: A removable, protective paper 
sleeve used when handling or storing a 5.25-inch 
disk. It must be removed before you insert the disk 
in a disk drive. Compare disk jacket. 

disk jacket: A permanent, protective covering 
for a disk. 5.25-inch disks have flexible, paper or 
plastic jackets; 3.5-inch disks have hard plastic 
jackets. The disk is never removed from the jacket. 
Compare disk envelope. 

Disk Operating System (DOS): An optional 
software system for the Apple II family of 
computers that enables the computer to control 
and communicate with one or more disk drives. 
The acronym DOS rhymes with boss. 

disk-resident: An adjective describing a 
program that does not remain in memory. The 
computer retrieves all or part of the program from 
the disk, as needed. Sometimes called disk-based. 
Compare memory-resident. 

Disk II drive: An older type of disk drive made 
and sold by Apple Computer for use with the 
Apple II, II Plus, and Ile. It uses 5.25-inch disks. 

display: (1) A general term to describe what you 
see on the screen of your display device when 
you're using a computer; from the verb form, 
which means "to place into view." (2) Short for a 
display device. 

display color: The color currently being used to 
draw high-resolution or low-resolution graphics 
on the display screen. 

display device: A device that displays 
information, such as a television set or video 
monitor. 

display screen: The screen of the monitor; the 
area where you view text and pictures when using 
the computer. 

DOS 3.2: An early Apple II operating system. 
DOS stands for Disk Operating System; 3.2 is 
the version number. Disks formatted using DOS 
3.2 have 13 sectors per track. 

356 Glossary 

DOS 3.3: An operating system used by the 
Apple II family of computers. DOS stands for Disk 
Operating System; 3.3 is the version number. 
Disks formatted with DOS 3.3 have 16 sectors per 
track. 

drive: See disk drive. 

DSR: See Data Set Ready. 

DTE: See Data Terminal Equipment. 

DTR: See Data Terminal Ready. 

dual in-line package (DIP): An integrated 
circuit packaged in a narrow rectangular box with a 
row of metal pins along each side. DIP switches 
on the box allow you to change settings. For 
example, ImageWriter printer DIP switches 
control functions such as line feed, form 
length, and baud setting. 

Dvorak keyboard: An alternate keyboard layout, 
also known as the American Simplified Keyboard, 
which increases typing speed because the keys 
most often used are in the positions easiest to 
reach. Compare QWERTY keyboard. 

EBCDIC: Acronym for Extended Binary-Coded 
Decimal Interchange Code; pronounced 
"EB-si-dik." A code used by IBM that represents 
each letter, number, special character, and 
control character as an 8-bit binary number. 
EBCDIC has a character set of 256 8-bit 
characters. Compare ASCII. 

effective address: In machine-language 
programming, the address of the memory 
location on which a particular instruction 
operates, which may be arrived at by indexed 
addressing or some other addressing method. 

SO-column text card: A peripheral card that 
allows the Apple II, Apple II Plus, and Apple Ile to 
display text in either 40 columns or 80 columns. 



80/ 40-column switch: A switch that controls 
the maximum number of columns or characters 
across the screen. A television can legibly display 
a maximum of 40 characters across the screen, 
whereas a video monitor can display 80 
·characters. 

embedded: Contained within. For example, the 
string 'HUMPTY DUMPTY' is said to contain an 
embedded space. 

emulate: To operate in a way identical to a 
different system. For example, the Apple II 
2780/3780 Protocol Emulator and the Apple II 
3270 BSC Protocol Emulator, together with the 
Apple Communications Protocol Card (ACPC), 
allow the Apple II, Apple II Plus, or Apple Ile to 
emulate the operations of IBM 3278 and 3277 
terminals and 3274 and 3271 control units. 

end-of-command mark: A punctuation mark 
used to separate commands sent to a peripheral 
device such as a printer or plotter. Also called a 
command terminator. 

end-of-line character: A character that 
indicates that the preceding text constitutes a full 
line. 

error code: A number or other symbol 
representing a type of error. 

error message: A message displayed or printed 
to tell you of an error or problem in the execution 
of a program or in your communication with the 
system. An error message is often accompanied 
by a beep. 

ESCAPE character: An ASCII character that, 
with many programs and devices, allows you to 
perform special functions when used in 
combination keypresses. 

escape code: A sequence of characters that 
begins with an ESCAPE character and constitutes a 
complete command. Usually synonymous with 
escape sequence. 

Escape key: A key on Apple II-family computers 
that generates the ESCAPE character. The Escape 
key is labeled Esc. In many applications, pressing 
Escape allows you to return to a previous menu or 
to stop a procedure. 

escape mode: A state of the Apple Ile and Ile 
entered by pressing the Escape key and certain 
other keys. The other keys take on special 
meanings for positioning the cursor and 
controlling the display of text on the screen. 

escape sequence: A sequence of keystrokes, 
beginning with the Escape key. In escape mode, 
escape sequences are used for positioning the 
cursor and controlling the display of text on the 
screen. Escape sequences are also used as codes to 
control printers. 

Esc key: See Escape key. 

even/odd parity check: In data transmission, a 
check that tests whether the number of 1 bits in a 
group of binary digits is even (even parity check) 
or odd (odd parity check). 

even parity: In data transmission, the use of an 
extra bit set to 0 or 1 as necessary to make the total 
number of 1 bits an even number; used as a means 
of error checking. Compare MARK parity, odd 
parity. 

exclusive OR: A logical operator that produces a 
true result if one of its operands is true and the 
other false, and a false result if its operands are 
both true or both false. Compare OR, AND, and 
NOT. 

execute: To perform the actions specified by a 
program command or sequence of commands. 

expansion slot: A connector into which you can 
install a peripheral card. Sometimes called a 
peripheral slot. See also auxiliary slot. 

expression: A formula in a program that defines 
a calculation to be performed. 

FIFO: Acronym for "first in, first out" order, as 
in a queue. 

Glossary 357 



file: Any named, ordered collection of 
information stored on a disk. Application 
programs and operating systems on disks are files. 
You make a me when you create text or graphics, 
give the material a name, and save it to disk. 

firmware: Programs stored permanently in 
read-only memory (ROM). Such programs (for 
example, the Applesoft Interpreter and the 
Monitor program) are built into the computer at 
the factory. They can be executed at any time but 
cannot be modified or erased from main 
memory. Compare hardware, software. 

fixed-point: A method of representing numbers 
inside the computer in which the decimal point 
(more correctly, the binary point) is considered 
to occur at a fixed position within the number. 
Typically, the point is considered to lie at the right 
end of the number so that the number is 
interpreted as an integer. Compare floatlng
point. 

flag: A variable whose value (usually 1 or 0, 
standing for true or false) indicates whether some 
condition holds or whether some event has 
occurred. A flag is used to control the program's 
actions at some later time. 

floating-point: A method of representing 
numbers inside the computer in which the decimal 
point (more correctly, the binary point) is 
permitted to "float" to different positions within 
the number. Some of the bits within the number 
itself are used to keep track of the point's position. 
Compare fixed-point. 

floppy disk: A disk made of flexible plastic, as 
compared to a hard disk, which is made of metal. 
The term floppy is now usually applied only to 
disks with thin, flexible disk jackets, such as 5.25-
inch disks. With 3.5-inch disks, the disk itself is 
flexible, but the jacket is made of hard plastic; 
thus, 3.5-inch disks aren't particularly "floppy." 

358 Glossary 

format: (n) (1) The form in which information is 
organized or presented. (2) The general shape 
and appearance of a printed page, including page 
size, character width and spacing, line spacing, 
and so on. (v) To divide a disk into tracks and 
sectors where information can be stored. Blank 
disks must be formatted before you can save 
information on them for the first time; same as 
initialize. 

form feed: An ASCII character (decimal 12) that 
causes a printer or other paper-handling device to 
advance to the top of the next page. 

Fortran: Short for Formula Translator. A high
level programming language especially suitable 
for applications requiring extensive numerical 
calculations, such as in mathematics, 
engineering, and the sciences. 

framing error: In serial data transfer, the 
absence of the expected stop bit(s) at the end of a 
received character. 

frequency: In alternating current (AC) signals, 
the number of complete cycles transmitted per 
second. Frequency is usually expressed in hertz 
(cycles per second), kilohertz (kilocycles per 
second), or megahertz (megacycles per second). 
In acoustics, frequency of vibration determines 
musical pitch. 

full duplex: A four-wire communication circuit 
or protocol that allows two-way data transmission 
between two points at the same time. Compare 
half duplex. 

function: A preprogrammed calculation that can 
be carried out on request from any point in a 
program. A function takes in one or more 
arguments and returns a single value. It can 
therefore be embedded in an expression. 

game 1/0 connector: A 16-pin connector 
inside the Apple II, II Plus, and Ile, originally 
designed for connecting hand controls to the 
computer, but also used for connecting some 
other peripheral devices. Compare hand control 
connector. 



graph: A pictorial representation of data. 

graphics: (1) Information presented in the form 
of pictures or images. (2) The display of pictures 
or images on a computer's display screen. 
Compare text. 

half duplex: A two-wire communication circuit 
or protocol designed for data transmission in 
either direction but not both directions 
simultaneously. Compare full duplex. 

hand control connector: A 9-pin connector on 
the back panel of the Apple Ile and Ile computers, 
used for connecting hand controls to the 
computer. Compare game 1/0 connector. 

hand controls: Peripheral devices, with rotating 
dials and push buttons. Hand controls are used to 
control game-playing programs, but they can also 
be used in other applications. 

hang: To cease operation because either an 
expected condition is not satisfied or an infinite 
loop is occurring. A computer that's hanging is 
called a hung system. Compare crash. 

hard disk: A disk made of metal and sealed into a 
drive or cartridge. A hard disk can store very large 
amounts of information compared to a floppy 
disk. 

hard disk drive: A device that holds a hard disk, 
retrieves information from it, and saves 
information to it. Hard disks made for 
microprocessors are permanently sealed into the 
drives. . 

hardware: In computer terminology, the 
machinery that makes up a computer system. 
Compare firmware, software. 

hertz: The unit of frequency of vibration or 
oscillation, defined as the number of cycles per 
second. Named for the physicist Heinrich Hertz 
and abbreviated Hz. The 6502 microprocessor 
used in the Apple II systems operates at a clock 
frequency of about 1 million hertz, or 1 megahertz 
(MHz). The 68000 microprocessor used in the 
Macintosh operates at 7.8336 MHz. 

hexadecimal: The representation of numbers in 
the base-16 system, using the ten digits 0 through 9 
and the six letters A through F. For example, the 
decimal numbers 0, 1, 2, 3, 4, ... 8, 9, 10, 11, ... 
15, 16, 17 would be shown in hexadecimal 
notation as 00, 01, 02, 03, 04, ... 08, 09, OA, OB, 
... OF, 10, 11. Hexadecimal numbers are easier for 
people to read and understand than are binary 
numbers, and they can be converted easily and 
directly to binary form. Each hexadecimal digit 
corresponds to a sequence of four binary digits, 
or bits. Hexadecimal numbers are usually 
preceded by a dollar sign ($). 

high ASCII characters: ASCII characters with 
decimal values of 128 to 255. Called high ASCII 
because their high bit (first binary digit) is set to 1 
(for on) rather than 0 (for off). 

high-level language: A programming language 
that is relatively easy for people to understand. A 
single statement in a high-level language typically 
corresponds to several instructions of machine 
language. High-level languages available from 
Apple Computer include BASIC, Pascal, Instant 
Pascal, Logo, Pilot, SuperPILOT, and Fortran. 
Compare low-level language. 

high-order byte: The more significant half of a 
memory address or other two-byte quantity. In the 
6502 microprocessor used in the Apple II family of 
computers, the low-order byte of an address is 
usually stored first, and the high-order byte 
second. In the 68000 microprocessors used in the 
Macintosh family, the high-order byte is stored 
first. 

high-resolution graphics: The display of 
graphics on a screen as a six-color array of points, 
280 columns wide and 192 rows high. When a text 
window is in use, the visible high-resolution 
graphics display is 2.so by 16o points. · 

hold time: In computer circuits, the amount of 
time a signal must remain valid after some related 
signal has been turned off. Compare setup time. 

Hz: See hertz. 

Glossary 359 



IC: See integrated circuit. 

immediate execution: The execution of a 
program statement as soon as it is typed. In 
BASIC, immediate execution occurs when the line 
is typed without a line number; immediate 
execution allows you to try out nearly every 
statement immediately to see how it works. 
Compare deferred execution. 

implement: To put into practical effect, as to 
implement a plan. For example, a language 
translator implements a particular language. 

IN#: This command designates the source of 
subsequent input characters. It can be used to 
designate a device in a slot or a machine-language 
routine as the source of input. 

index: (1) A number used to identify a member 
of a list or table by its sequential position. (2) A list 
or table whose entries are identified by sequential 
position. (3) In machine-language programming, 
the variable component of an indexed address, 
contained in an index register and added to the 
base address to form the effective address. 

indexed addressing: A method used in 
machine-language programming to specify 
memory addresses. See also memory location. 

index register: A register in a computer 
processor that holds an index for use in indexed 
addressing. The 6502 microprocessor used in the 
Apple II family of computers has two index 
registers, called the X register and the Y 
register. The 68000 microprocessor used in 
Macintosh-family computers has 16 registers that 
can be used as index registers. 

index variable: A variable whose value changes 
on each pass through a loop. Often called control 
variable or loop variable. 

infinite loop: A section of a program that will 
repeat the same sequence of actions indefinitely. 

360 Glossary 

initialize: (1) To set to an initial state or value in 
preparation for some computation. (2) To 
prepare a blank disk to receive information by 
organizing its surface into tracks and sectors; same 
as format. 

initiali:r.ed disk: A disk that has been organized 
into tracks and sectors by the computer and is 
therefore ready to store information. 

input: Information transferred into a computer 
from some external source, such as the keyboard, 
a disk drive, or a modem. 

input/output (1/0): The process by which 
information is transferred between the computer's 
memory and its keyboard or peripheral devices. 

input routine: A machine-language routine; the 
standard input routine reads characters from the 
keyboard. A different input routine might, for 
example, read them from an external terminal. 

instruction: A unit of a machine-language or 
assembly-language program corresponding to a 
single action for the computer's processor to 
perform. 

integer: A whole number in fixed-point form. 
Compare real number. 

Integer BASIC: A version of the BASIC 
programming language used by the Apple II family 
of computers. Integer BASIC is older than 
Applesoft BASIC and is capable of processing 
numbers in integer (fixed-point) form only. Many 
games are written in Integer BASIC because its 
instructions can be executed very quickly. 
Compare Applesoft BASIC. 

integrated circuit: An electronic 
circuit-including components and 
interconnections-entirely contained in a single 
piece of semiconducting material, usually silicon. 
Often referred to as an JC or a chip. 



interface: (1) The point at which independent 
systems or diverse groups interact. The devices, 
rules, or conventions by which one component of 
a system communicates with another. Also, the 
point of communication between a person and a 

· computer. (2) The part of a program that defines 
constants, variables, and data structures, rather 
than procedures. 

interface card: A peripheral card that 
implements a particular interface (such as a 
parallel or serial interface) by which the computer 
can communicate with a peripheral device such as 
a printer or modem. 

interpreter: A language translator that reads a 
program instruction by instruction and 
immediately translates each instruction for the 
computer to carry out. Compare compiler. 

interrupt: A temporary suspension in the 
execution of a program that allows the computer to 
perform some other task, typically in response to a 
signal from a peripheral device or other source 
external to the computer. 

inverse video: The display of text on the 
computer's display screen in the form of dark dots 
on a light (or other single phosphor color) 
background, instead of the usual light dots on a 
dark background. 

1/0: See input/output. 

1/0 device: Input/output device. A device that 
transfers information into or out of a computer. 
See input, output, peripheral device. 

1/0 link: A fixed location that contains the 
address of an input/output subroutine in the 
computer's Monitor program. 

IWM: "Integrated Woz Machine"; the custom 
chip that controls Apple's 3.5-inch disk drives. 

joystick: A peripheral device with a l~ver, 
typically used to move creatures and objects in 
game programs; a joystick can also used in 
applications such as computer-aided design and 
graphics programs. 

K: See kilobyte. 

keyboard: The set of keys, similar to a typewriter 
keyboard, used for entering information into the 
computer. 

keyboard input connector: The connector 
inside the Apple II family of computers by which 
the keyboard is connected to the computer. 

keyword: A special word or sequence of 
characters that identifies a particular type of 
statement or command, such as RUN, BRUN, or 
PRINT. 

kilobyte (K): A unit of measurement consisting 
of 1024 (210) bytes. In this usage, kilo (from the 
Greek, meaning a thousand) stands for 1024. Thus, 
64K memory equals 65,536 bytes. See also 
megabyte. 

KSW: The symbolic name of the location in the 
computer's memory where the standard input link 
(namely, to the keyboard) is stored. KSW stands 
for keyboard switch. 

language: See programming language. 

language card: A peripheral card that, when · 
placed in slot 0 of a 48K Apple II or Apple II Plus, 
gives the computer a total of 64K of memory. If 
you have an Apple II or Apple II Plus, you need a 
language card or the equivalent to use ProDOS. 

language translator: A system program that 
reads another program written in a particular 
programming language and either executes it 
directly or converts it into some other language 
(such as machine language) for later execution. 
See interpreter, compiler, assembler. 

leading zero: A zero occurring at the beginning 
of a decimal number, deleted by most computing 
programs. 

least significant bit: The rightmost bit of a 
binary number. The least significant bit 
contributes the smallest quantity to the value of the 
number. Compare most significant bit. 

Glossary 361 



LIFO: Acronym for "first in, last out" order, as in 
a stack. 

line: See program line. 

line feed: An ASCII character (decimal 10) that 
ordinarily causes a printer or video display to 
advance to the next line. 

line number: A number identifying a program 
line in an Applesoft BASIC program. 

line width: The number of characters that fit on a 
line on the screen or on a page. 

list: To display on a monitor, or print on a 
printer, the contents of memory or of a file. 

load: To transfer information from a peripheral 
storage medium (such as a disk) into main 
memory for use-for example, to transfer a 
program into memory for execution. 

location: See memory location. 

logic: (1) In microcomputers, a mathematical 
treatment of formal logic using a set of symbols to 
represent quantities and relationships that can be 
translated into switching circuits, or gates. AND, 
OR, and NOT are examples of logical gates. Each 
gate has two states, open or closed, allowing the 
application of binary numbers for solving 
problems. (2) The systematic scheme that defines 
the interactions of signals in the design of an 
automatic data processing . system. 

logical operator: An operator, such as AND, 
that combines logical values to produce a logical 
result, such as true or false; sometimes called a 
Boolean operator. Compare arithmetic 
operator, rebtional operator. 

logic board: See main logic board. 

loop: A section of a program that is executed 
repeatedly until a limit or condition is met, such as 
an index variable's reaching a specified ending 
value. 

loop variable: See index variable. 

362 Glossary 

low-level language: A programming language 
that is relatively close to the form the computer's 
processor can execute directly. One statement in a 
low-level language corresponds to a single 
machine-language instruction. Examples are 6502 
machine language, 6502 assembly language, and 
68000 machine and assembly languages. Compare 
high-level language. 

low-order byte: The less significant half of a 
memory address or other two-byte quantity. In the 
6502 microprocessor used in the Apple II family of 
computers, the low-order byte of an address is 
usually stored first, and the high-order byte 
second. The opposite is true for Macintosh 
computers. 

low-power Schottky (LS): A type of transistor
transistor logic (Tn) integrated circuit having 
lower power and higher speed than a conventional 
TTL integrated circuit; named for Walter Schottky 
(1886-1956), a semiconductor physicist. 

low-resolution graphics: The display of 
graphics on a display screen as a 16-color array of 
blocks, 40 columns wide and 48 rows high. For 
example, on a Macintosh when the text window is 
in use, the visible low-resolution graphics display 
is 40 by 40 plotting points-that is, 40 by 40 pixels. 
See high-resolution graphics. 

LS: See low-power Schottky. 

machine language: The form in which 
instructions to a computer are stored in memory 
for direct execution by the computer's processor. 
Each model of computer processor (such as the 
6502 microprocessor used in the Apple II family of 
computers) has its own form of machine language. 

mainframe computer: A central processing 
unit or computer that is larger and more powerful 
than a minicomputer or a personal computer 
(microcomputer). Frequently called simply a 
matnframe' for short. The Apple Access II 
program and MacTerminal make it possible to 
communicate with mainframe computers over 
telecommunications media. 



main logic board: A large circuit board that 
holds RAM, ROM, the microprocessor, custom
integrated circuits, and other components that 
make the computer a computer. 

main memory: The part of a computer's 
memory whose contents are directly accessible to 
the microprocessor; usually synonymous with 
random-access memory (RAM). Programs are 
loaded into main memory, and that's where the 
computer keeps information while you're working. 
Sometimes simply called memory. See also read
only memory, read-write memory. 

MARK parity: A bit of value 1 appended to a 
binary number for transmission. The receiving 
device checks for errors by looking for this value 
on each character. Compare even parity, odd 
parity. 

megabyte: A unit of measurement equal to 1024 
kilobytes, or 1,048,576 bytes; abbreviated Mb. See 
kilobyte. 

memory: A hardware component of a computer 
system that can store information for later 
retrieval. See main memory, random-access 
memory, read-only memory, read-write 
memory. 

memory location: A unit of main memory that 
is identified by an address and can hold a single 
item of information of a fixed size. In the Apple II 
family of computers, a memory location holds 
one byte, or eight bits, of information. 

memory-resident: (1) Stored permanently in 
memory as firmware (ROM). (2) Held continually 
in memory even while not in use. DOS is a 
memory-resident program. 

menu: A list of choices presented by a program, 
from which you can select an action. 

MHz: Megahertz; one million hertz. See hertz. 

microcomputer: A computer, such as any of the 
Apple II or Macintosh computers, whose 
processor is a microprocessor. 

microprocessor: A computer processor 
contained in a single integrated circuit, such as the 
6502 or 65C02 microprocessor used in the Apple II 
family of computers and the 68000 
microprocessor used in the Macintosh family. The 
microprocessor is the central processing unit 
(CPU) of the microcomputer. 

microsecond: One millionth of a second. 
Abbreviated µs. 

millisecond: One thousandth of a second. 
Abbreviated ms. 

mode: A state of a computer or system that 
determines its behavior. A manner of operating. 

modem: Short for MOdulator/DEModulator. A 
peripheral device that links your computer to 
other computers and information services using 
the telephone lines. 

modifier key: A key (Apple, Caps Lock, 
Control, Option, Shift) that generates no 
keyboard events of its own, but changes the 
meaning of other keys or mouse actions. Also 
called a control key. 

modulate: To modify or alter a signal so as to 
transmit information. For example, conventional 
broadcast radio transmits sound by modulating 
the amplitude (amplitude modulation, or AM) or 
the frequency (frequency modulation, or FM) of a 
carrier signal. 

monitor: See video monitor. 

Monitor program: A system program built into 
the firmware of some computers, used for directly 
inspecting or changing the contents of main 
memory and for operating the computer at the 
machine-language level. The Monitor program 
activates the disk drive when you turn on the 
computer. 

Glossary 363 



most significant bit: The leftmost bit of a binary 
number. The most significant bit contributes the 
largest quantity to the value of the number. For 
example, in the binary number 10110 (decimal 
value 22), the leftmost bit has the decimal value 16 
(24). Compare least significant bit. 

mouse: A small device you move around on a 
flat surface next to your computer. The mouse 
controls a pointer on the screen whose 
movements correspond to those of the mouse. 
You use the pointer to select menu items, to move 
data, and to draw with in graphics programs. 

mouse button: The button on the top of the 
mouse. In general, pressing the mouse button 
initiates some action on whatever is under the 
pointer, and releasing the button confirms the 
action. 

nanosecond: One billionth of a second. 
Abbreviated ns. 

nested loop: A loop contained within the body 
of another loop and executed repeatedly during 
each pass through the outer loop. See loop. 

nested subroutine call: A call to a subroutine 
from within the body of another subroutine. 

nibble: A unit of data equal to half a byte, or four 
bits. A nibble can hold any value from 0 to 15. 

NOT: A unary logical operator that produces a 
true result if its operand is false, and a false result if 
its operand is true. Compare AND, OR, exclusive 
OR. 

NTSC: (1) Abbreviation for National Televtsion 
Standards Committee. The committee that 
defined the standard format used for transmitting 
broadcast video signals in the United States. (2) 
The standard video format defined by the NTSC. 

object code: See object program. 

object program: The translated form of a 
program produced by a language translator such 
as a compiler or assembler. Also called object 
code. Compare source program. 

364 Glossary 

odd parity: In data transmission, the use of an 
extra bit set to 0 or 1 as necessary to make the total 
number of 1 bits an odd number; used as a means 
of error checking. Compare even parity, MARK 
parity. 

opcode: See operation code. 

Open Apple: A control key on the 
Apple II-family keyboards; on later keyboards, 
simply called the Apple key. 

operand: A value to which an operator is 
applied. The value on which an operation code 
operates. Compare argument. 

operating system: A program that organizes 
the actions of the parts of the computer and its 
peripheral devices. 

operation code: The part of a machine-language 
instruction that specifies the operation to be 
performed. Often called opcode. 

operator: A symbol or sequence of characters, 
such as+ or AND, specifying an operation to be 
performed on one or more values (the operands) 
to produce a result. See arithmetic operator, 
relational operator, logical operator, unary 
operator, binary operator. 

option: (1) Something chosen or available as a 
choice; for instance, items in a menu. (2) An · 
argument whose provision is optional. 

OR: A logical operator that produces a true result 
if either or both of its operands are true, and a 
false result if both of its operands are false. 
Compare exclusive OR, AND, NOT. 

output: Information transferred from a computer 
to some external destination, such as the display 
screen, a disk drive, a printer, or a modem. 

output routine: A machine-language routine 
that performs the sending of characters. The 
standard output routine sends characters to the 
screen. A different output routine might, for 
example, send them to a printer. 



overflow: The condition that exists when an 
attempt is made to put more data into a given 
memory area than it can hold; for example, a 
computational result that exceeds the allowed 
range. 

override: To modify or cancel an instruction by 
issuing another one. 

overrun: A condition that occurs when the 
processor does not retrieve a received character 
from the receive data register of the Asynchronous 
Communications Interface Adapter (ACIA) before 
the subsequent character arrives. The ACIA 
automatically sets bit 2 (OVR) of its status register; 
subsequent characters are lost. The receive data 
register contains the last valid data word received. 

page: (1) A screenful of information on a video 
display. In .the Apple II family of computers, a 
page consists of 24 lines of 40 or 80 characters 
each. (2) An area of main memory containing text 
or graphical information being displayed on the 
screen. (3) A segment of main memory 256 bytes 
long and beginning at an address that is an even 
multiple of 256. 

page zero: See zero page. 

parallel interface: An interface in which 
several bits of information (typically eight bits, or 
one byte) are transmitted simultaneously over 
different wires or channels. Compare serial 
interface. 

parity: Sameness of level or count, usually the 
count of 1 bits in each character, used for error 
checking in data transmission. See even parity, 
MARK parity, odd parity, parity bit. 

Pascal: A high-level programming language with 
statements that resemble English phrases. Pascal 
was designed to teach programming as a 
systematic approach to problem solving. Named 
after the philosopher and mathematician Blaise 
Pascal. 

pass: A single execution of a loop. 

PC board: See printed-circuit board. 

peek: To read information directly from a 
location in the computer's memory. 

peripheral: (adj) At or outside the boundaries of 
the computer itself, either physically (as a 
peripheral device) or in a logical sense (as a 
peripheral card). (n) Short for peripheral devtce. 

peripheral bus: The bus used for transmitting 
information between the computer and peripheral 
devices connected to the computer's expansion 
slots or ports. 

peripheral card: A removable printed-circuit 
board that plugs into one of the computer's 
expansion slots. Peripheral cards allow the 
computer to use peripheral devices or to perform 
some subsidiary or peripheral function. 

peripheral device: A piece of hardware-such as 
a video monitor, disk drive, printer, or 
modem-used in conjunction with a computer 
and under the computer's control. Peripheral 
devices are often (but not necessarily) physically 
separate from the computer and connected to it by 
wires, cables, or some other form of interface. 
They often require peripheral cards. 

peripheral slot:. See expansion slot. 

phase: (1) A stage in a periodic process. A point 
in a cycle. For example, the 6502 microprocessor 
uses a clock cycle consisting of two phases called <I> 
O and <l> 1. (2) The relationship between two 
periodic signals or processes. 

PILOT: Acronym for Programmed Inquiry, 
Leaming, Or Teaching. A high-level programming 
language designed for teachers and used to create 
computer-aided instruction (CAI) lessons that 
include color graphics, sound effects, lesson text, 
and answer checking. SuperPILOT is an enhanced 
version of the original Apple II PILOT 
programming language. 

Glossary 365 



pipelining: A feature of a processor that enables 
it to begin fetching the next instruction before it 
has finished executing the current instruction. All 
else being equal, processors with this feature run 
faster than those without it 

pixel: Short for picture element. A point on the 
graphics screen; the visual representation of a 
bit on the screen (white if the bit is 0, black if 
it's 1). Also, a location in video memory that 
maps to a point on the graphics screen when the 
viewing window includes that location. 

plotting vector: A code representing a single 
step in drawing a shape on the high-resolution 
graphics screen. The plotting vector specifies 
whether to plot a point at the current screen 
position, and in what direction to move (up, 
down, left, or right) before processing the next 
vector. 

pointer: An item of information consisting of the 
memory address of some other item. For 
example, Applesoft BASIC maintains internal 
pointers to the most recently stored variable, the 
most recently typed program line, and the most 
recently read data item, among other things. The 
6502 uses one of its internal registers as a pointer to 
the top of the stack. 

point of call: The point in a program from which 
a subroutine or function is called. 

poke: To store information directly into a 
location in the computer's memory. 

pop: To remove the top entry from a stack, 
moving the stack pointer to the entry below it. 
Synonymous with pull. Compare push. 

power supply: A circuit that draws electrical 
power from a power outlet and converts it to the 
kind of power the computer can use. 

power supply case: The metal case inside most 
Apple II and Macintosh computers that houses the 
power supply. The Apple Ile uses an external 
power supply case. 

366 Glossary 

PR#: An Applesoft BASIC command that sends 
output to a slot or a machine-language program. It 
specifies an output routine in the ROM on a 
peripheral card or in a machine-language routine 
in RAM by changing the address of the standard 
output routine used by the computer. 

precedence: The order in which operators are 
applied in evaluating an expression. Precedence 
varies from language to language, but usually 
resembles the precedence rules of algebra. 

printed-circuit board: A hardware component 
of a computer or other electronic device, 
consisting of a flat, rectangular piece of rigid 
material, commonly Fiberglas, to which 
integrated circuits and other electronic 
components are connected. 

procedure: In the Pascal and Logo programming 
languages, a set of instructions that work as a unit; 
approximately equivalent to the term subroutine 
in BASIC. 

processor: The hardware component of a 
computer that performs the actual computation by 
directly executing instructions represented in 
machine language and stored in main memory. 
See microprocessor. 

ProDOS: An Apple II operating system designed 
to support hard disk drives like the ProFile, as well 
as floppy disk storage devices. ProDOS stands for 
Professional Disk Operating System. Compare 
DOS. 

ProDOS command: Any one of the 28 
commands recognized by ProDOS. 

program: (n) A set of instructions describing 
actions for a computer to perform in order to 
accomplish some task, conforming to the rules 
and conventions of a particular programming 
language. (v) To write a program. 

program line: The basic unit of an Applesoft 
BASIC program, consisting of one or more 
statements separated by colons (:) . 



programming language: A set of symbols and 
associated rules or conventions for writing 
programs. BASIC, Logo, and Pascal are 
programming languages. 

prompt: A message on the screen that tells you of 
some need for response or action. A prompt 
usually takes the form of a symbol, a message, a 
dialog box, or a menu of choices. 

prompt character: A text character displayed 
on the screen, usually just to the left of a cursor, 
where your next action is expected. The prompt 
character often identifies the program or 
component of the system that's prompting you. 
For example, Applesoft BASIC uses a square 
bracket prompt character (J ); Integer BASIC, an 
angle bracket (> ); and the System Monitor 
program, an asterisk (*). 

prompt line: A specific area on the display 
reserved for prompts. 

protocol: A formal set of rules for sending and 
receiving data on a communication line. 

push: To add an entry to the top of a stack, 
moving the stack pointer to point to it. Compare 
pop. 

queue: A list in which entries are added at one 
end and removed at the other, causing entries to 
be removed in first-in, first-out (FIFO) order. 
Compare stack. 

QWER1Y keyboard: The standard layout of keys 
on a typewriter keyboard; its name is formed from 
the first six letters on the top row of letter keys. 
Compare Dvorak keyboard. 

radio-frequency (RF) modulator: A device that 
makes your television set work as a monitor. 

RAM: See random-access memory. 

random-access memory (RAM): Memory in 
which information can be referred to in an 
arbitrary or random order. As an analogy, a book 
is a random-access storage device in that it can be 
opened and read at any point. RAM usually means 
the part of memory available for programs from a 
disk; the programs and other data are lost when 
the computer is turned off. A computer with 512K 
RAM has 512 kilobytes available to the user. 
(Technically, the read-only memory (ROM) is 
also random access, and what's called RAM 
should correctly be termed read-write memory.) 
Compare read-only memory, read-write 
memory. 

random-access text file: A text file that is 
partitioned into an unlimited number of uniform
length compartments called records. When you 
open a random-access text file for the first time; 
you must specify its record length. No record is 
placed in the file until written to. Each record can 
be individually read from or written to-hence, 
random-access. 

raster: The pattern of parallel lines making up 
the image on a video display screen. The image is 
produced by controlling the brightness of 
successive points on the individual lines of the 
raster. 

read: To transfer information into the 
computer's memory from outside the computer 
(such as a disk drive or modem) or into the 
computer's processor from a source external to 
the processor (such as the keyboard or main 
memory). 

read-only memory (ROM): Memory whose 
contents can be read, but not changed; used for 
storing firmware. Information is placed into 
read-only memory once, during manufacture; it 
then remains there permanently, even when the 
computer's power is turned off. Compare 
random-access memory, read-write 
memory. 

Glossary 367 



read-write memory: Memory whose contents 
can be both read and changed (or written to). The 
information contained in read-write memory is 
erased when the computer's power is turned off 
and is permanently lost unless it has been saved on 
a disk or other storage device. Compare random
access memory, read-only memory. 

real number: In computer usage, a number that 
may include a fractional part; represented inside 
the computer in floating-point form. Because a 
real number is of infinite precision, this 
representation is usually approximate. Compare 
integer. 

register: A location in a processor or other chip 
where an item of information is held and modified 
under program control. 

relational operator: An operator, such as >, 
that operates on numeric values to produce a 
logical result. Compare arithmetic operator, 
logical operator. 

reserved word: A word or sequence of 
characters reserved by a programming language 
for some special use and therefore unavailable as a 
variable name in a prograin. 

resident: See memory-resident, disk
resident. 

return address: The point in a program to 
which control returns on completion of a 
subroutine or function. 

RF modulator: See radio-frequency 
modulator. 

RGB monitor: A type of color monitor that 
receives separate signals for each color (red, 
green, and blue). See composite video. 

ROM: See read-only memory. 

routine: A part of a program that accomplishes 
some task subordinate to the overall task of the 
program. 

row: A horizontal arrangement of character cells 
or graphics pixels on the screen. 

368 Glossary 

RS-232 cable: Any cable that is wired in 
accordance with the RS-232 standard, which is the 
common serial, data communication interface 
standard. 

run: (1) To execute a program. When a program 
nms, the computer performs the instructions. (2) 
To load a program into main memory from a 
peripheral storage medium, such as a disk, and 
execute it. 

save: To store information by transferring the 
information from main memory to a disk. Work 
not saved disappears when you tum off the 
computer or when the power is interrupted. 

screen: See display screen. 

scroll: To move all the text on the screen upward 
or downward, and, in some cases, sideways. See 
viewport, window. 

serial interface: An interface in which 
information is transmitted sequentially, a bit at a 
time, over a single wire or channel. Compare 
parallel interface. 

setup time: The amount of time a signal must b~ 
valid in advance of some event Compare hold 
time. 

silicon (Si): A solid, crystalline chemical 
element from which integrated circuits are made. 
Silicon is a semiconductor; that is, it conducts 
electricity better than insulators, but not as well as 
metallic conductors. Silicon should not be 
confused with silica-that is, silicon dioxide, such 
as quartz, opal, or sand-or with silicone, any of a 
group of organic compounds containing silicon. 

simple variable: A variable that is not an 
element of an array. 

6502: The microprocessor used in the Apple II, 
in the Apple II Plus, and in early models of the 
Apple Ile. 

65C02: The microprocessor used in the 
enhanced Apple Ile, the extended keyboard Ile, 
and the Apple Ile. 



68000: The microprocessor used in the 
Macintosh and Macintosh Plus. 

slot: A narrow socket inside the computer where 
you can install peripheral cards. Also called an 
expansion slot. 

soft switch: Also called a software switch; a 
means of changing some feature of the computer 
from within a program. For example, DIP switch 
settings on ImageWriter printers can be 
overridden with soft switches. Specifically, a soft 
switch is a location in memory that produces some 
special effect whenever its contents are read or 
written. 

software: A collective term for programs, the 
instructions that tell the computer what to do. 
They're usually stored on disks. Compare 
hardware, firmware. 

source code: See source program. 

source program: The form of a program given 
to a language translator, such as a compiler or 
assembler, for conversion into another form; 
sometimes called source code. Compare object 
program. 

space character: A text character whose printed 
representation is a blank space, typed from the 
keyboard by pressing the Space bar. 

stack: A list in which entries are added (pushed) 
or removed (popped) at one end only (the top of 
the stack), causing them to be removed in last-in, 
first-out (LIFO) order. Compare queue. 

standard instruction: An instruction 
automatically present when no superseding 
instruction has been received. -

starting value: The value assigned to the index 
variable on the first pass through a loop. 

start up: To get the system running. Starting up is 
the process of first reading the operating system 
program from the disk, and then running an 
application program. 

startup disk: A disk with all the necessary 
program files-such as the Finder and System files 
contained in the System folder in Macintosh-to 
set the computer into operation. In Apple II, 
sometimes called a boot disk. 

statement: A unit of a program in a high-level 
language that specifies an action for the computer 
to perform. A statement typically corresponds to 
several instructions of machine language. 

step value: The amount by which the index 
variable changes on each pass through a loop. 

string: An _ item of information consisting of a 
sequence of text characters. 

strobe: A signal whose change is used to trigger 
some action. 

subroutine: A part of a program that can be 
executed on request from another point in the 
program and that returns control, on completion, 
to the point of the request 

synchronous: A mode of data transmission in 
which a constant time interval exists between 
transmission of successive bits, characters, or 
events. Compare asynchronous. 

synchronous transmission: A transmission 
process that uses a clocking signal to ensure an 
integral number of unit (time) intervals between 
any two characters. Compare asynchronous 
transmission. 

syntax: (1) The rules governing the structure of 
statements or instructions in a programming 
language. (2) A representation of a command that 
specifies all the possible forms the command can 
take. 

system: A coordinated collection of interrelated 
and interacting parts organized to perform some 
function or achieve some purpose-for example, 
a computer system comprising a processor, 
keyboard, monitor, and disk drive. 

system configuration: See configuration. 

Glossary 369 



system program: A program that makes the 
resources and capabilities of the computer 
available for general purposes, such as an 
operating system or a language translator. 
Compare application program. 

system software: The component of a 
computer system that supports application 
programs by managing system resources such as 
memory and VO devices. 

TAB: An ASCII character that commands a 
device such as a printer to start printing at a preset 
location (called a tab stop) . There are two such 
characters: horizontal tab (hex 09) and vertical tab 
(hex OB). TAB works like the tabs on a typewriter. 

television set: A display device capable of 
receiving broadcast video signals (such as 
commercial television broadcasts) by means of an 
antenna. Can be used in combination with a 
radio-frequency modulator as a display device for 
the Apple II family of computers. Compare video 
monitor. 

text: (1) Information presented in the form of 
readable characters. (2) The display of characters 
on a display screen. Compare graphics. 

text window: An area on the video display 
screen within which text is displayed and scrolled. 

traces: Electrical paths that connect the 
components on a circuit board. 

transistor-transistor logic (Til..): (1) A family 
of integrated circuits having bipolar circuit logic; 
1TLs are used in computers and related devices. 
(2) A standard for interconnecting such circuits, 
which defines the voltages used to represent 
logical zeros and ones. 

troubleshoot: To locate and correct the cause of 
a problem or malfunction, especially in hardware. 
Compare debug. 

TfL: See transistor-transistor logic. 

turnkey disk: See startup disk. 

370 Glossary 

unary operator: An operator that applies to a 
single operand. For example, the minus sign(-) in 
a negative number such as --6 is a unary arithmetic 
operator. Compare binary operator. 

unconditional branch: A branch that does not 
depend on the truth of any condition. Compare 
conditional branch. 

value: An item of information that can be stored 
in a variable, such as a number or a string. 

variable: (1) A location in the computer's 
memory where a value can be stored. (2) The 
symbol used in a program to represent such a 
location. Compare constant. 

vector: (1) The starting address of a program 
segment, when used as a common point for 
transferring control from other programs. (2) A 
memory location used to hold a vector, or the 
address of such a location. 

video: (1) A medium for transmitting 
information in the form of images to be displayed 
on the screen of a cathode-ray tube. (2) 
Information organized or transmitted in video 
form. 

video monitor: A display device that can receive 
video signals by direct connection only, and that 
cannot receive broadcast signals such as 
commercial television. Can be connected directly 
to the computer as a display device. Compare 
television set. 

viewport: All or part of the display screen used 
by an application program to display a portion of 
the information (such as a document, picture, or 
worksheet) on which a program is working. 
Compare window. 

volume: A general term referring to a storage 
device; a source of or a destination for 
information. A volume has a name and a volume 
directory with the same name. Its information is 
organized into files. 



warm start: The process of transferring control 
back to the operating system in response to a 
failure in an application program. Compare cold 
start. 

window: The portion of a collection of 
information (such as a document, picture, or 
worksheet) that is visible in a viewport on the 
display screen. Compare viewport. 

word: A group of bits that is treated as a unit; the 
number of bits in a word is a characteristic of each 
particular computer. 

write: To transfer information from the 
computer to a destination external to the 
computer (such as a disk drive, printer, or 
modem) or from the computer's processor to a 
destination external to the processor (such as 
main memory). 

write-enable notch: The square cutout on one 
edge of a 5.25-inch disk's jacket. If there is no 
write-enable notch, or if it is covered with a write
protect tab, the disk drive can read information 
from the disk, but cannot write on it. 

write protect: To protect the information on a 
5.25-inch disk by covering the write-enable notch 
with a write-protect tab, preventing the disk drive 
from writing any new information onto the disk. 
Compare copy protect. 

write-protect tab: (1) A small adhesive sticker 
used to write protect a 5.25-inch disk by covering 
the write-enable notch. (2) The small plastic tab in 
the corner of a 3.5-inch disk jacket. You lock (write 
protect) the disk by sliding the tab toward the edge 
of the disk; you unlock the disk by sliding the tab 
back so that it covers the rectangular hole. 

X register: One of the two index registers in the 
6502 microprocessor. 

Y register: One of the two index registers in the 
6502 microprocessor. 

zero page: The first page (256 bytes) of memory 
in the Apple II family of computers, also called 
page zero. Since the high-order byte of any 
address in this page is zero, only the low-order 
byte is needed to specify a zero-page address; this 
makes zero-page locations more efficient to 
address, in both time and space, than locations in 
any other page of memory. 

Glossary 371 





Bibliography 

Addendum to the Destgn Guidelines. Cupertino, Calif.: Apple 
Computer, Inc., 1984. 

Applesoft BASIC Programmer's Reference Manual, Volumes 1 
and 2. For the Apple II, Ile, and Ile. Reading, Mass.: 
Addison-Wesley, 1982, 1985. ISBN 0-201-17722-6. 

Applesoft Tutorial. Reading, Mass.: Addison-Wesley, 1983, 1985. 
ISBN 0-201-17724-2. 

Apple II Monitors Peeled. Cupertino, Calif.: Apple Computer, 
Inc., 1978. Currently not updated for Apple Ile and Ile, but a 
good introduction to Apple II series input/output procedures; 
also useful for historical background. 

Apple Ile Design Guidelines. Cupertino, Calif.: Apple Computer, 
Inc., 1982. 

"Characteristics of Television Systems." C.C.IR. Report, Rep. 624 
(1970-1974), pp. 22-52. 

"Colorimetric Standards in Colour Television." C.C.I.R. Report, 
Rep. 476-1 (1970-1974), pp. 21-22. 

Leventhal, Lance. 6502 Assembly Language Programming. 
Berkeley, Calif.: Osborne/McGraw-Hill, 1979. 

Sims, H. V. Principles of PAL Colour Television and Related 
Systems. London, England: Newnes-Butterworth, 1969. 
ISBN-0-592-05970-7. 

Synertek Hardware manual. Santa Clara, Calif.: Synertek 
Incorporated, 1976. Does not contain instructions new to 65C02, 
but is the only currently available manufacturer's hardware 
manual for 6500-series microcomputers. 

Synertek Programming manual. Santa Clara, Calif.: Synertek 
Incorporated, 1976. The only currently available manufacturer's 
programming manual for 6500-series microcomputers. 

373 



37 4 Bibliography 

"Video-Frequency Characteristics of a Television System to Be 
Used for the International Exchange of Programmes Between 
Countries That Have Adopted 625-Llne Colour or Monochrome 
Systems.n C.C.lR., Recommendation 472-1 (1970-1971), pp. 
53-54. 

Watson, Allen, III. "A Simplified Theory of Video Graphics, 
Part I." Byte, Vol. 5, No. 11 (November, 1980). 

_ .•A Simplified Theory of Video Graphics, Part II." Byte, Vol. 5, 
No. 12 (December, 1980). 

_."More Colors for Your Apple." Byte, Vol. 4, No. 6 Qune, 1979). 

_ . "True Sixteen-Color Hi-Res.n Apple Orchard, Vol. 5, No. 1 
Qanuary, 1984). 

Wozniak, Steve. "System Description: The Apple II." Byte, Vol. 2, 
No. 5 (May, 1977). 

_. "SWEET16: The 6502 Dream Machine. n Byte, Vol. 2, No. 10 
(October, 1977). 



Cast of Characters 
* (asterisk) as prompt character 

62 
A (caret) 122, 125 

(colon) as Monitor command 
105 

> (greater than sign) as prompt 
character 62 

~ (Open Apple) 11-14, 228 
. (period) as Monitor command 

102 
00 (phi 0) 162-163, 167, 

170-172, 180-181 
0 1 (phi 1) 162-163, 167, 

170-172, 180-181 
02 (phi 2) 162 
? (question mark) as prompt 

character 62 
(right bracket) as prompt 

character 62 
S (Solid Apple) 11-14, 228 

A 

Al 92 
A2 92 
A4 92 
accumulator 138, 148 
ACIA 286 
address bus 161-162 
addressing 

display pages 31-37, 174-179 
indirect 77 
1/0 locations 138-139 
RA.Iv!: 139, 169-171 
relative 121, 126, 137 
ROM 168-169 

address transformation 177 
ALTCHAR soft switch 29 
alternate character set 19-20, 228 

on original Ile 20 

Index 

assemblers 121 
assembly language 234 

ALTZP soft switch 84, 89-90 
analog inputs 42-43 
animation 231 
annunciators 40-41, 43 
any-key-down flag 13 

asterisk ( *) as prompt character 62 
auxiliary firmware 86-93 
auxiliary memory 86-93 

Apple keys 11-14 differences in Apple II family 
differences in Apple II family 

228 
Applesoft BASIC xxi, 12, 105, 235 

and lowercase xxii 
and uppercase 48-49 
80-column support xxi 
tabbing with original Apple Ile 

229 
map 87 
moving data to 92 
soft switches 89 
subroutines 91 

auxiliary RAM 86-88 
auxiliary slot 7, 49 

271-272 
use of page 3 78 

differences in Apple II family 
229 

use of page zero 77, 79-81 
Apple II compatibility with Apple Ile 

48-50 

signals 197-200 
AUXM:OVE subroutine 91-92 

Apple II family differences 227-232 
Apple Uc interrupt differences 156 B 
Apple Ile, differences between backspacing 63 

original and enhanced xix-xxiii bank-switched memory 82-86, 87, 
ASCII input mode 107 229 
COITTl subroutine 56 map 82 
interrupt support 132, 148-149 bank switches 83-85 
microprocessor 6 reading 86 
Mini-Assembler 123-125 BASIC, Applesoft See Applesoft 
Monitor Search command 110 ·BASIC 
MouseText 12, 20 BASIC, Integer See Integer 
slot 3 144 BASIC . 
tabbing in Applesoft 271-272 BASICIN subroutine 58, 220 
using Caps Lock 49 address in I/0 link 53 

Apple Ile 80-Column Text Card 86, BASIC Monitor command 115 
134, 267-275 BASICOUT subroutine 65, 220 

Apple Ile Extended 80-Column address in I/0 link 53 
Text Card 86, 134, 267-275 baud rate for SSC 279 

A register 146 BEL character 53 
arithmetic, hexadecimal 116 BELL subroutine 221 
arrow keys 61, 63-64 BELLI subroutine 39, 221 
ASCII codes 14-16 
ASCII input mode 106-107 

375 



bit definition 236 
bit mapping of graphics 23-26 
booting 267-268 
break instructions 155 
BRK handler 155 
BRK instruction 155 
BRK vector 148 
BS character 53 
byte definition 237 

c 
canceling lines 63 
CAN character 54 
Caps Lock 11 

for older software compatibility 
49 

caret c~) 122, 125 
carriage returns with SSC 281 
cassette I/0 39-40, 188 

commands 111-114 
soft switches 39 

central processing unit (CPU) 4--6 
See also 65C02 microprocessor 

CH 52 
changing memory contents 

105- 110 
character code 12 
character generator ROM 178 
character sets, text 19-20 

differences among Apple II 
models 228 

CHARGEN signal 185 
circuit board 4-7 

connectors 7 
clear-strobe switch 12 
CLEOLZ subroutine 50, 69, 219 
clock rate 161 
clock signals 162 
CLREOL subroutine 50, 64, 221 
CLREOP subroutine 50, 64, 221 
CLRSCR subroutine 64, 221 
CLRTOP subroutine 64, 221 
cold-start reset 95 
colon(:) as Monitor command 105 
color graphics with black-and-white 

monitors 16 

376 Index 

colors 
double-high-resolution graphics 

25-26, 185 
high-resolution graphics 23-25, 

183-i84 
low-resolution graphics 21-22, 

182 
command characters, Monitor 101 
comma tabbing with original 

Apple Ile 271 
complementary decimal values 12 
connectors 

back panel 8 
cassette 1/0 8, 39 
D-type 8, 40 
game I/0 7, 13 
hand control 8, 40-43 
9-pin 8, 40 
phone jacks 8, 39 
power 160 
RCA-type jack 8 
video monitor 8, 186 

Control 11 
control characters 244, 248 

with BASICOUT 53-55 
with COUTl 53-55 
with 80-column firmware 

273-274 
with Pascal 1/0 protocol 70-71 

Control-B Monitor command 115 
Control-C Monitor command 115 
Control-E Monitor command 111 
Control-K Monitor command 115 
Control-P Monitor command 115 
Control-U 50 
Control-X 63 
Control-Y Monitor command 119 
COUT subroutine 50-52, 64, 221 

deactivating 80-column firmware 
50 

COUTl subroutine 51-53, 64, 136, 
222 

address in I/0 link 51 
on original Apple Ile 56 

cover 2 
CP/M 234 

starting up with 268 

CPU 4-6 
. See also 65C02 microprocessor 

CR character 53 
CROUT subroutine 64, 222 
CROUTl subroutine 64, 222 
CSW link 140-141 
current, supply 159-160 
cursor-control keys 11 
cursor motion in escape mode 

60--61 
cursor position 52-58 
custom !C's 164-168 
CV 52 
cycle stealing 170 

D 
daisy chains, interrupt and DMA 

193-195, 208 
data bus 161 
data format for SSC 279 
DCl character 54 
DC2 character 54 
DC3 character 54 
decimal values 12 

converting to hexadecimal 
238-239 

negative 239-240 
device assignment, peripheral card 

145 
device identification 145 

DEVICE SELECT' signal 133 
DHIRES soft switch 30 
Diagnostics ROM 168 
differences among Apple II models 

227-232 
differences between original and 

enhanced Apple Ile xix-xxii 
ASCII input mode 106-107 
COUTl subroutine 56 
interrupt support 132, 148-149 
microprocessor 6 
Mini-Assembler 123 
Monitor Search command 110 
MouseText 17, 20 
slot 3 144 
tabbing in Applesoft 269 
using Caps Lock 49 

disassemblers 121 



display, video 16-37 
address transformation 175-176 
double-high-resolution graphics 

184-185 
80-column text 179 
formats 18, 57 
40-column text 179 
generation 173-185, 231 
high-resolution graphics 183-184 
low-resolution graphics 181-182 
memory addressing 174-178 
modes 17, 19-26, 28-31, 

178-185 
pages 23, 25, 27-28, 31-37, 

78-79 
refreshing 170-171 
specifications 17 
text 178-181 

DMA daisy chain 193-195, 208 
DOS 3.3 xx, 140, 233 

and uppercase 48-49 
starting up with 268 
use of page 3 78 
use of page zero 81 

double-high-resolution graphics 
17, 18, 25-26 

colors 26 
display pages 27 
generation 184-185 
map 37 
memory pages 25 

double-high-resolution Page 1 79 
D-type connector 8 

E 

editing with GETLN 63-64 
80COL soft switch 29 
80-column firmware xxi, 49-50 

activating 50 
control characters with 272-275 

80-column text 21, 22 
differences in Apple II family 

228 
display pages 27-28 
generation 178-179 
map 34 
signals 197-198 
with Applesoft xxi 
with Pascal xxi 
with TV set 16 

80-Column Text Card 86, 134, 
150, 267-275 

80STORE soft switch 29, 32, 87, 
89, 90, 198 

EM character 55 

ENSO' signal 198 
enhanced Apple Ile See 

differences between original 
and enhanced Apple Ile 

ENKBD' signal 187 
entry points for 1/0 routines 

145-146 
escape codes 60-61 
escape mode 60-61 
ESC character 55 
ETB character 54 
EXAMINE command 110-111 
examining memory 102 
expansion ROM space 133-135 
expansion slot 3 49-50 
expansion slots 7, 132-144 

signals 191-197 
Extended 80-Column Text 

Card 86, 134, 267-275 
extended keyboard Apple Ile xxiii 

F 
FF character 54 
firmware 

auxiliary 86-93 
80-column xxi, 49-50 
1/0 46-71 
Monitor subroutines 46-71 
Pascal 1.1 protocol 68-71, 

145-146 
slot 3 69 

flag, any-key-down 13 
FLASH command 270-271 
flashing format 19-20, 57-58 
forced cold-start reset 96 
Fortran 235 
40-column text 21, 22 

display pages 27-28 
generation 178-179 
memory map 33, 177 
with TV set 16 

14M signal 163 
FS character 55 

G 
game 1/0 

connectors 13 
signals 190-191 

GET command 269 
GETLN subroutine 58, 62-64, 222 

editing with 63-64 
input buffer 78 
line length 3 
used by Monitor 101 
with 80-column card 269 

GETLNl subroutine 222 
GETLNZ subroutine 222 
GO command 120 
graphics See double-high-

resolution graphics; 
high-resolution graphics; 
low-resolution graphics 

graphics modes 21-26 
bit-mapping 23-26 

greater than sign (>) as prompt 
character 62 

GS character 55 

H 
hand control connectors 8, 40-43 
hard disk with Pascal xxii 
hexadecimal arithmetic 116 
hexadecimal values 12 

converting to decimal 238-239 
converting to negative decimal 

239-240 
high-resolution graphics 17, 18, 

23-25 
addressing display pages 31, 36 
bit patterns 241-242 
colors 24-25, 183-184 
display pages 23, 27 
generation 183-184 
map 36 

high-resolution Page 1 23, 27, 79 
high-resolution Page 2 23, 79 
HIRES soft switch 29, 30, 89 
HLINE subroutine 67, 222 
HOME command 270-271 
HOME subroutine 50, 67, 223 
HTAB command xxi 

with original Apple Ile 271-272 
humidity, operating 158 

Index 377 



I, J 
identification byte xx, 231 
IN# command 115 
index register 138 
indirect addressing 77 
input buffer 78 
INPlJf command 269 
input devices See I!O devices 
input/output See I/0 
Input/Output Unit (IOU) 5, 6, 

166-167, 186-187 
inputs 

analog 38, 42-43 
hand control 38 
secondary 38--43 
switch 41-42, 43 
See also I/0 devices 

Integer BASIC 12, 235 
and bank-switched memory 82 
and reset 83 
and uppercase 49 
use of page 3 78 
use of page zero 77, 79-81 

interpreter ROM 5 
interrupt handler 

built-in 147, 151 
user's 154-155 

interrupts 147...:.156 
and card in auxiliary slot 50 
daisy chain 193, 204 
definition 147 
original Apple Ile differences 

148 
priority 147 
sequence 152 

interrupt vector 151 
INT IN pin 147 
INT our pin 147 
INVERSE command 270-271 
inverse display format 19-20, 

57-58, 114 

378 Index 

I/0 
addressing 138-139 
circuits 186-191 
devices, built-in 9-43 
entry points 145-146 
firmware, built-in 45-71 
links 51, 78, 140-141 
memory for peripheral cards 

133 
memory map 142 
Pascal protocol 68--76, 144, 

145-146 
switching memory 142-143 

IOREST subroutine 223 
IOSAVE subroutine 223 
I/0 SELECT' signal 133-134 
IOU (Input/Output Unit) 5, 6, 

166-167, 186-187 
IOUDIS soft switch 30 
IRQ vector 147-148 
IRQ' signal 148 

K 

KBD' signal 187 
keyboard 3, 10-16 

automatic repeat function 10 
circuits 187-188 
differences in Apple II family 

227 
memory locations 12 
rollover 10 

KEYBOARD command 115 
keyboard encoder 5, ·12 
keyboard ROM 5 
keyboard strobe 13 
KEYIN subroutine 58, 59-60, 223 

address in I/0 link 51 
keypad 188 
keys and ASCII codes 14-16 
KSW link 140 . 

L 

language card 86 
differences in Apple II family 

229 
LED 2 
Left Arrow 63 
LF character 53, 54 
line feeds with SSC 281 
links, I/0 51 

address storage 78 
changing 140-141 

LIST command 121-122 
low-resolution graphics 17, 18, 

M 

21-23 
colors 23 
display pages 27 
generation 181-182 
map 35 
with TV set 16 

machine language 120-122 
mapping display addresses 

175-177 
maps See memory maps 
memory 

addressing 168 
auxiliary 86-93 
bank-switched 82-86, 87, 229 
changing contents 105-110 
display 174-178 
dump 102-104 
examining 102 
filling 117-118 
for peripheral cards 132-136 
I/0 space 142-143 
organization 74-98 
sharing 91 
text window locations 56-57 
used by SSC 287 

Memory Management Unit (MMU) 

5, 6, 164-165 



memory maps 
auxiliary memory 87 
bank-switched areas 82 
double-high-resolution graphics 

37 
80-column text 34 
40-column text 33, 177 
high-resolution graphics 36 
I/0 142 
low-resolution graphics 35 
main memory 75 
RAM 76 

memory pages, reserved 77-81 
microprocessor See 

6502 microprocessor; 
65C02 microprocessor 

Mini-Assembler 123-126 
errors 125 
instruction formats 126 
starting 123 

MIXED soft switch 29 
MMU 5, 6, 164-165 
Monitor, System 100-129 

command summary 127-129 
command syntax 101 
creating commands 119 
firmware subroutines 46-71 
returning to BASIC 115 
ROM listings 307-347 
use of page 3 8 
use of page zero 79 

Monitor ROM 168-169 
listings 307-347 

MouseText characters 17, 19, 246 
MOVE command 107-108, 117 
MOVE subroutine 223 
MSLOT 150, 154 

N 

NAK character 54 
negative decimal values 12 

converting 239-240 
NEXTCOL subroutine 223 
9-pin connectors 8, 40 
NORMAL command 270-271 
normal format 19-20, 114 
NTSC standard 16, 25, 173 

0 

Open Apple (Ll) 11, 13, 228 
operating systems 233-234 
original Apple Ile See differences 

between original and enhanced 
Apple Ile 

output See I/0 
overheating 158 

p 

Page 
double-high-resolution 79 
high-resolution 23, 27, 79 
text 27, 78 

Page 2 
high-resolution 23, 79 
text 27, 79 

page 3 vectors 97 
page zero 77, 79-81 
PAGE2 soft switch 29, 32, 87, 89, 

90 
pages, reserved memory 77-81 
PAL device 5, 167-168 
parity for SSC 279 
Pascal xx, 235, 275 

and bank-switched memory 82 
I/ 0 subroutines 46 
starting up with 267-268 

Pascal 1.1 firmware protocol 68-71, 
144, 145-146 

Pascal operating system 234 
period (.) as Monitor command 102 
peripheral address bus 192, 194 
peripheral cards 

device assignment 145 
1/0 memory space 133, 141 
programming for 132-156 
RAM space 136 
ROM space 133-135 

peripheral data bus 192 
differences in Apple II family 

231 
peripheral slots See expansion slots 
00 (phi 0) 162, 170, 171, 

180-181 
01 (phi 1) 162, 170, 171, 

180-181 
02 (phi 2) 162 

phone jacks 8, 39 
PINIT subroutine 69 
pipelining 161 
PLOT subroutine 67, 223 
POKE command 271-272 
power connector 160 
power supply 4, 159-160 
PR# command 115 
PRBL2 subroutine 67, 224 
PRBLNK subroutine 224 
PRBYTE subroutine 67, 224 
PREAD subroutine 43, 69, 224 
PRERR subroutine 67, 224 
PRHEX subroutine 68, 224 
primary character set 19-20, 228 
PRINTER command 115 
PRNTAX subroutine 68, 224 
ProDOS 105, 141, 233 

interrupt support 148-149 
starting up with 268 
use of page 3 78 
use of page zero 81 

Profile hard disk xxii 
Programmed Array Logic (PAL) 

device 5, 167-168 
prompt characters 60 
PSTATUS subroutine 71 
PWRITE subroutine 69 

Q 

Q3 signal 163 
question mark(?) as prompt 

character 62 

R 
radio-frequency modulator 7 
RAM 

addressing 139, 169-172 
allocation 76-81 
auxiliary 86-88 
space for peripheral cards 136 
timing signals 172 

RAMRD soft switch 88-90 
RAM upgrade xxiii 
RAMWRT soft switch 88-90 
random number generator 59 
RDALTCHAR soft switch 29 
RDALTZP soft switch 84 

Index 379 



RDBNK2 soft switch 84 
RDCHAR subroutine 224 
RDDHIRES soft switch 30 
RD80COL soft switch 29 
RD80STORE soft switch 29 
RDHIRES soft switch 30 
RDIOUDIS soft switch 30 
RDKEY subroutine 47, 58, 59, 

225, 269 
RDLCRAM soft switch 84 
RDMIXED soft switch 29 
RDP AGE2 soft switch 29 
RDTEXT soft switch 29 
READ subroutine 40, 225 
READ tape command 113-114 
refreshing the display 170-171 
registers 146, 161 

accumulator 138, 148 
A register 146 
examining and changing 

110-111 
index 138 
X register 146 
Y register 146 

relative addressing 121, 126, 137 
reserved memory pages 77-81 
Reset 11, 14, 228 
reset routine 94-98 

and bank switches 83 
differences in Apple II family 

230 
reset vector 96-97 
Return Monitor command 127 
retype function 64 
RF modulator 7 
RGB-type monitor 185 
Right Arrow 64 
right bracket ( ] ) as prompt 

character 62 
rollover, N-key 10 
ROM 

addressing 168-169 
expansion 133-135 
interpreter 5 
keyboard 5 
Monitor listings 307-347 
space for peripheral cards 

133-135 
video 5 

ROMENl signal 168-169 
ROMEN2 signal 168-169 
R/W80 signal 197 

380 Index 

s 
schematic diagram 201-204 
SCRN subroutine 68, 225 
SEARCH command 110 
self-test 14, 98 

differences in Apple II family 
230 

SETCOL subroutine 68, 225 
SETINV subroutine 225 
SETNORM subroutine 225 
Shift 11 
Shift-key mod 41-42 
short circuits 160 
SI character 54 
signals 

auxiliary slot 197-200 
expansion slot 191-197 
game I/O connector 190-191 
IOU 166-167 
keyboard connector 187-188 
keypad connector 188 
MMU 165 
PAL device 167-168 
RAM timing 172 
65C02 timing 162-163 
speaker connector 189 
video connector 186 
video timing 180-181, 184 

signature byte 231 
single-wire Shift-key mod xxiii 
6502 microprocessor xx, 6 

differences from 65C02 6, 
209-210 

65C02 microprocessor xx, 6, 
209-219 

data sheet 210-219 
differences from 6502 6, 

209-210 
specifications 161-163 
timing 162-163 

65 C02 stack 78 
slot, auxiliary 49-50 
slot number, finding 137 
slot 3 49-50, 149-150 

firmware 69 
in original Apple !Ie 144 

slots, expansion 7, 132-144 
signals 191-197 

SLOTC3ROM soft switch 50, 143 
SLOTCXROM soft switch 143 
SO character 54 

soft switches 
auxiliary memory 87, 89 
bank switches 82-86, 88 
differences in Apple II family 

230 
display 28-31 
I/O memory 142-143 
implemented by IOU 166-167 
implemented by MMU 164 
speaker 39 

Solid Apple (S) 11, 13, 228 
SPC command xxi 
speaker 4, 38-39, 189 

connector 189 
soft switch 39 

specifications, environmental 158 
stack 

auxiliary 153-154 
main 153-154 
65C02 78 

stack pointers 78, 153 
standard 1/0 links 51 

address storage 78 
changing 140-141 

starting up 267-268 
startup drives xx-xxi 
stop-list feature 55 
strobe bit 13 
strobe output 41, 43 
STSBYTE 285 
SUB character 55 
subroutines 

directory of 220-226 
output 64-68 
Pascal I/O protocol 68-71 
standard 1/0 46-71 
See also names of subroutines 

Super Serial Card 276-291 
command character 278 
commands 278-285 
error codes 285-286 
memory use 287-290 
scratchpad RAM 290-291 
terminal mode 286-287 

switch 0 41, 43 
switch 1 41, 43 
switches See soft switches 
switch inputs 41-42, 43 
SYN character 54 
System Monitor See Monitor, 

System 



T u 
tabbing 271-272 US character 55 
TAB command xxi user's interrupt handler 154-155 

with original Apple Ile 271-272 
television set 16 
temperature 

case 159 
operating 158 

text cards 86, 134, 150, 267-275 
text character sets 

alternate 19-20 
primary 19-20, 228 

text display 19-21, 22, 178-181 
flashing format 57-58 
inverse format 19, 57-58 
normal format 19 
See also 40-column text; 

80-column text 
text Page 1 27, 78 
text Page 2 27, 79 
TEXT soft switch 29 
text window 56-57 

memory locations 57 
timing signals 

expansion slots 194 
RAM 172 
65C02 microprocessor 162-163 
video 180-181, 184 

v 
vectors 

BRK 148 
interrupt 151 
IRQ 147-148 
page 3 97 
reset 96-97 

VERIFY command 109, 118 
VERIFY subroutine 226 
vertical sync 231 
VID7M signal 163 
video counters 173-174 
video display See display, video 
video monitor 16-17 · 

connector 8, 186 
video output signals 185-186 
video ROM 5 
video standards 173 
VLINE subroutine 68, 226 
voltage 

line 158 
supply 159 

VTABZ subroutine 68 
VT character 54 

w 
WAIT subroutine 226 
warm-start reset 95 
WRITE subroutine 39, 226 
WRITE tape command 111-112 

x 
XFER subroutine 91, 93, 144, 153 
X register 146 

y 

Y register 146 

z 
zero page 77, 79-81 

Index 381 



nm APPLE PUBLISHING SYSTEM 

This Apple manual was written, 
edited, and composed on a 
desktop publishing system using 
the Apple Macintosh™ Plus and 
Microsoft® Word. Proof and 
final pages were created on the 
Apple LaserWriter® Plus. 
POSTSCRIPT™, the 
LaserWriter's page-description 
language, was developed by 
Adobe Systems Incorporated. 

Text type is ITC Garamond® 
(a downloadable font distributed 
by Adobe Systems). Display 
type is ITC Avant Garde 
Gothic®. Bullets are ITC Zapf 
Dingbats®. Program listings are 
set in Apple Courier, a 
monospaced font. 



9 .. Tell Apple About Your ......................................................... . 

0 Please contact your authorized Apple dealer when you have questions about your Apple products. Dealers are 
trained by Apple Computer and are given the resources to handle service and support for all Apple products. If 
you need the name of an authorized Apple dealer in your area, call toll-free: 800-538-9696. 

0 Would you like to tell Apple what you think about this product? After you have had an opportunity to use this 
product we would like to hear from you. You can help us to improve our products by responding to the 
questionnaire below and marking the appropriate boxes on the card at the right with a #2 lead pencil. If you 
have more than one response to a question, mark all the boxes that apply. Please detach the card and mail it to 
Apple. Include additional pages of comments if you wish. 

1 . How would you rate the Apple 1/e Technical Reference overall? (1 =poor ... 6 =excellent) 

2, Where did you buy this manual? (1 =dealer, 2 =bookstore, 3 =other) 

3. How much experience have you had with computers? (1=none . .. 6=extensive) 

4. If you program, which of the following best describes your programming? (1 =a college class requirement, 

2=a job requirement, 3=a hobby, 4=a source of income, 5=other) 

'; . If you program, which programming languages do you use? (1=BASIC, 2=P'ascal, 3=C, 4=assembly language, 

5 =other) 

6. Are you a Certified or Registered Developer? (1=Certified, 2=Registered, 3=both, 4=neither) 

7. How much of the Apple Ile Technical Reference have you read? (1=entire manual, 2=whole chapters, 

3 = spet:ific areas of interest) 

8 . How easy was the manual to read and understand? (1=difficult ... 6=very easy) 

9. How would you rate the organization of this manual? (1 =poor. .. 6 =excellent) 

1 0. How easy was it to find the information you needed? (1 =difficult . . . 6 =very easy) 

11. To what degree did the technical material in the manual meet your expectations? (1 =1ow ... 6=high) 

12 . What did you like best about the manual? 

I 5. What did you like least about the manual? 

14 . . What section of the manual do you use most? 

15. Please describe any errors or inconsistencies you may have encountered in this manual. (Page numbers would 

be helpful.) 

16. What suggestions do you have for improving the Apple Ile Technical Reference? 

Thanks for your time and effort. 030-1478-A 



. . Apple® lie Jechn/cal-Reletence 

- c:J c:J c:J c:J c:J c:J c:J c:J - c:J c:J c:J 
- c:J c:J - c:J c:J c:J c:J c:J c:J c:J c:J c:J 
- c:J c:J - c:J c:J c:J c:J c:J c:J c:J c:J c:J 
- c:J .c:J c:J c:J - c:J c:J c:J c:J c:J c:J c:J 
- c:J c:J c:J c:J c:J c:J c:J c:J c:J - c:J c:J 
- c:J c:J c:J c:J c:J c:J c:J c:J - c:J c:J c:J 
- c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J 
- c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J c:J 

Please Do Not Mark Above This Line 

- 2. [I] [IJ ITJ 

- 3. [I] [IJ ITJ Cl] a::J [I] 

- 4. [I] [IJ ITJ Cl] a::J 

- 5. [I] [IJ ITJ Cl] a::J 

- 6. [I] [IJ ITJ Cl] 

- 7. [I] [I] ITJ 

- 8. [I] [IJ ITJ Cl] a::J [£] 

- 9. [I] [IJ ITJ Cl] a::J [I] 

- I 0. CIJ CI:l ITJ CIJ a::J CIJ 

- 1 I . CIJ CI:l ITJ CIJ a::J CIJ 

- 13. 

- 15. 

- 16. 



.0 
;:I 

~ 0.. 

~ 
....... 
M 

~ < 
E • a 
& 





The Apple Technical library 
The Official Publications from 
Apple® Computer, Inc. 
Th~ Apple Technical Library offers programmers, 
developers, and enthusiasts the most complete tech
nical information available on Apple computers, 
peripherals, and software. The Library consists of 
technical manuals for the Apple II family of com
puters, the Macintosh family of computers, key 
peripherals, and programming environments. 

Apple Technical Library titles on the Apple II 
family include technical, references to the Apple Ile, 
Apple Ile, and Apple IIGs computers, with detailed 
descriptions of the hardware, firmware, ProDOS 
operating system, and the built-in programming 
tools that programmers and developers can draw 
upon. In addition to a technical introduction and 
programmer's guide to the Apple IIGs, there are 
tutorials and references for Applesoft BASIC and 
Instant Pascal programmers. 

The Inside Macintosh Library provides 
complete technical references to the Macintosh 
512, Macintosh 512 enhanced, Macintosh Plus, 
Macintosh SE, and Macintosh II computers. Indi
vidual volumes provide technical introductions 
<i:nd programmer's guides to the Macintosh as well 
as detailed information on hardware, firmware, sys
tem software, and programming tools. The Inside 
Macintosh Library offers the most detailed and 
complete source of information available for the 
Macintosh family of computers. 

In addition, titles in the Apple Technical 
Library offer references to the wide range of impor
tant printers, communications standards, and · 
programming environments such as the Standard 
Apple Numerics Environment (SANE) to help pro
grammers and experienced users get the most out 
their computer systems. 



The Official Publication from Apple Computer, Inc. 
Written and produced by the people at Apple Computer, this is the definitive, up-to
date reference manual for the Apple® Ile computer. It was written for professional 
programmers, designers of per\pheral equipment, and advanced home users. The 
first printing of thfs manual describedthe internal operation of the original and 
enhanced Apple IIe computers. The manual has now been revised to cover the new 
128KApple IIe with extended keyboard. 

The Apple Ile Technical Reference Manual provides detailed descriptions of all of 
the Apple He's hardware and firmware, including input/output features (such as 
Mousetext), memory organization, and the use of the monitor firmware. Appen
dixes offer complete reference information to the 6502 and 6SC02 instruction sets 
and built-in VO subroutines, a complete source listing of the monitor firmware, 
and more. Anyone who needs technical information on the internal workings of the 
,original, the enhanced, or the extended-keyboard Apple IIe will find this book an 
indispensable guide to one of the world's most popular computers. 

Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, California 95014 
( 408) 996-1010 
TIX 171-576 

Addison-Wesley Publ 

030-1194-B 
Printed in US.A 

ISBN 0-201-17750-1 


	Apple IIe Technical Reference Manual
	Table of Contents
	Preface
	Contents of the Manual
	The Apple IIe Family
	The original Apple IIe
	The Enhanced Apple IIe
	The Extended Keyboard Apple IIe
	Symbols used in this Manual


	Chapter 1:  Introduction
	Removing the Cover
	The Keyboard
	The Speaker
	The Power Supply
	The Circuit Board
	Connectors on the Circuit Board
	Connectors on the Back Panel

	Chapter 2:  Built-In I/O Devices
	Keyboard
	Reading the Keyboard

	Video Display Generator
	Video Display Specifications
	Text Modes
	Graphics Modes
	Video Display Pages
	Display Mode Switching
	Addressing Display Pages Directly

	Secondary Inputs & Outputs
	Speaker
	Cassette Input & Output
	Hand Control Connector Signals
	Summary of Secondary I/O Locations


	Chapter 3:  Built-In I/O Firmware
	Using I/O Subroutines
	Apple II Compatibility
	80 Column Firmware
	The Old Monitor

	Standard I/O Links

	Standard Output Features
	COUT Output Subroutine
	Control Characters with COUT1 and BASICOUT
	The Stop-List Feature
	The Text Window
	Inverse & Flashing Text

	Standard Input Features
	RDKEY Input Subroutine
	KEYIN Input Subroutine
	GETLN Input Subroutine
	Editing with GETLN

	Monitor Firmware Support
	I/O Firmware Support

	Chapter 4:  Memory Organization
	Main Memory Map
	RAM Memory Allocation
	Reserved Memory Pages

	Bank-Switched Memory
	Setting Bank Switches
	Reading Bank Switches

	Auxillary Memory & Firmware
	Memory Mode Switching
	Auxillary Memory Subroutines

	Reset Routine
	Cold Start Procedure
	Warm Start Procedure
	Forced Cold Start
	The Reset Vector


	Chapter 5:  Using the Monitor
	Invoking the Monitor
	Syntax of Monitor Commands
	Monitor Memory Commands
	Examining Memory Contents
	Memory Dump

	Changing Memory Contents
	Changing One Byte
	Changing Consecutive Locations
	ASCII Input Mode
	Moving Data In Memory
	Comparing Data In Memory
	Searching for Bytes in Memory

	Examining & Changing Registers
	Monitor Cassette Tape Commands
	Saving Data On Tape
	Reading Data From Tape

	Miscellaneous Monitor Commands
	Inverse & Normal Display
	Back to BASIC
	Redirecting Input & Output
	Hexadecimal Arithmetic

	Special Tricks with the Monitor
	Multiple Commands
	Filling Memory
	Repeating Commands
	Creating Your Own Commands

	Machine Language Programs
	Running a Program
	Disassembled Programs

	The Mini-Assembler
	Starting the Mini-Assembler
	Restrictions
	Using the Mini-Assembler
	Mini-Assembler Instruction Formats

	Summary of Monitor Commands
	Examining Memory
	Changing Contents of Memory
	Moving & Comparing
	The Examine Command
	The Search Command
	Cassette Tape Commands
	Miscellaneous Monitor Commands
	Runing & Listing Programs
	The Mini-Assembler


	Chapter 6:  Programming for Peripheral Cards
	Peripheral Card Memory Spaces
	Peripheral Card I/O Space
	Peripheral Card ROM Space
	Expansion ROM Space
	Peripheral Card RAM Space

	I/O Programming Suggestions
	Finding the Slot Number with ROM Switched In
	I/O Addressing
	Changing the Standard I/O Links

	Other Uses of I/O Memory Space
	Switching I/O Memory

	Developing Cards for Slot 3
	Pascal 1.1 Firmware Protocol
	Device Identification
	I/O Routine Entry Points

	Interrupts on the Enhanced Apple IIe
	What is an Interrupt?
	Interrupts on Apple IIe Series Computers
	Rules of Interrupt Handler
	Interrupt Handling on the 65C02 & 6502
	Saving the Apple IIe's Memory Configuration
	Managing Main & Auxillary Stacks
	User's Interrupt Handler at $3FE
	Handling Break Instructions
	Interrupt Differences: Apple IIe vs Apple IIc


	Chapter 7:  Hardware Implementation
	Environmental Specifications
	Power Supply
	Power Connector

	The 65C02 Microprocessor
	65C02 Timing

	Custom Integrated Circuits
	Memory Management Unit (MMU)
	Input/Output Unit (IOU)
	PAL Device

	Memory Addressing
	ROM Addressing
	RAM Addressing

	Video Display
	Video Counters
	Display Memory Addressing
	Video Display Modes

	Video Output Signals
	Built-In I/O Circuits
	Keyboard
	Cassette I/O
	Speaker
	Game I/O Signals

	Expanding the Apple IIe
	Expansion Slots
	Auxillary Slot


	Appendix A: The 65C02 Microprocessor
	Differences Between 6502 & 65C02
	Different Cycle Times
	Difference Instruction Results

	Data Sheet

	Appendix B: Directory of Built-In Subroutines
	Appendix C: Apple II Family Differences
	Keyboard
	Apple Keys
	Character Sets
	80-Column Display
	Escape Codes & Contro Characters
	Built-In Language Card
	Auxillary Memory
	Auxillary Slot
	Back Panel & Connectors
	Soft Switches
	Built-In Self-Test
	Forced Reset
	Interrupt Handling
	Vertical Sync for Animators
	Signature Byte
	Hardware Implementation

	Appendix D: Operating Systems & Languages
	Operating Systems
	ProDOS
	DOS 3.3
	Pascal Operating System
	CP/M

	Languages
	Assembly Language
	Applesoft BASIC
	Integer BASIC
	Pascal
	Fortran


	Appendix E: Conversion Tables
	Bits & Bytes
	Hexadecimal & Decimal
	Hexadecimal & Negative Decimal
	Graphics Bits & Pieces
	Eight-bit Code Conversions

	Appendix F: Frequently Used Tables
	1. Keys & ASCII Codes
	2. Keyboard Memory Locations
	3. Video Display Specifications
	4. Double High-Resolution Graphics Colors
	5. Video Display Page Locations
	6. Display Soft Switches
	7. Monitor Firmware Routines
	8a. Control Characters, 80-col Firmware OFF
	8b. Control Characters, 80-col Firware ON
	9. Text Format Control Values
	10. Escape Codes
	11. Pascal Video Control Functions
	12. Bank Select Switches
	13. Auxillary Memory Select Switches
	14. 48K RAM Transfer Routines
	15. I/O Memory Switches
	16. I/O Routine Offsets & Registers Under Pascal 1.1 Protocol

	Appendix G: Using an 80-Column Text Card
	Starting Up with Pascal or CP/M
	Starting Up with ProDOS or DOS 3.3
	Using the GET Command
	When to Switch Modes vs When to Deactivate
	Display Features with the Text Card
	INVERSE, FLASH, NORMAL, HOME
	Tabbing with an Original Apple IIe
	Comma Tabbing with the Original Apple IIe
	HTAB and POKE 1403

	Using Control Characters with the Card
	Control Characters & Their Functions
	How to Use Control-Character Codes in Programs
	A Word of Caution to Pascal Programmers


	Appendix H: Programming with the Super Serial Card
	Loading the Card
	Operating Modes
	Operating Commands
	The Command Character
	Baud Rate, nB
	Data Format, nD
	Parity, nP
	Set Time Delay, nC, nL & nF
	Echo Characters to the Screen, E_E/D
	Automatic Carriage Return, C
	Automatic Line Feed, L_E/D
	Mask Line Feed In, M_E/D
	Reset Card, R
	Specify Screen Slot, S
	Translate Lowercase Characters, nT
	Suppress Control Characters, Z
	Find Keyboard, F_E/D
	XOFF Recognition, X_E/D
	Tab in BASIC, T E/D

	Terminal Mode
	Entering Terminal Mode, T
	Transmitting a Break, B
	Special Characters, S_E/D
	Quitting Terminal Mode, Q

	SSC Error Codes
	The ACIA (Asynchronous Communication Interface Adapter)
	SSC Firmware Memory Use
	Zero-Page Locations
	Peripheral Card I/O Space
	Scratchpad RAM Locations


	Appendix I: International Versions
	English Keyboard
	French Keyboard
	Canadian Keyboard
	German Keyboard
	Italian Keyboard
	Western Spanish Keyboard
	Swedish Keyboard
	Certification
	Power Supply Specifications

	Appendix J: Monitor Firmware Listing
	Glossary
	Bibliography
	Index
	Back Cover



